Skip to main content

Optimized Aequorin Reconstitution Protocol to Visualize Calcium Ion Transients in the Heart of Transgenic Zebrafish Embryos In Vivo

  • Protocol
  • First Online:
Bioluminescence

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2524))

Abstract

We introduce how to image calcium ion levels in the heart of zebrafish embryos and larvae up to 5 days post-fertilization with the photoprotein green fluorescent protein (GFP)-aequorin (GA) in the transgenic line Tg(myl7:GA). Incubation of the embryos with CTZ to obtain the functional photoprotein yields few emission counts, suggesting that, when the heart is beating, the rate of aequorin consumption is faster than that of the reconstitution with CTZ. In this chapter, we present an improved aequorin reconstitution protocol. We further describe the experimental procedure as well as the bioluminescence data analysis and processing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Shimomura O, Johnson FH, Saiga Y (1962) Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea. J Cell Comp Physiol 59:223–239

    Article  CAS  Google Scholar 

  2. Shimomura O, Johnson FH (1978) Peroxidized coelenterazine, the active group in the photoprotein aequorin. Proc Natl Acad Sci U S A 75:2611–2615

    Article  CAS  Google Scholar 

  3. Shimomura O (2006) Bioluminescence: chemical principles and methods. World Scientific, Hackensack

    Book  Google Scholar 

  4. Baubet V, Le Mouellic H, Campbell AK et al (2000) Chimeric green fluorescent protein-aequorin as bioluminescent Ca2+ reporters at the single-cell level. Proc Natl Acad Sci U S A 97:7260–7265

    Article  CAS  Google Scholar 

  5. Bakayan A, Vaquero CF, Picazo F et al (2011) Red fluorescent protein-aequorin fusions as improved bioluminescent Ca2+ reporters in single cells and mice. PLoS One 6:e19520

    Article  CAS  Google Scholar 

  6. Bakayan A, Domingo B, Vaquero CF et al (2017) Fluorescent protein–photoprotein fusions and their applications in calcium. Imaging 93:448–465

    CAS  Google Scholar 

  7. Brini M (2008) Calcium-sensitive photoproteins. Methods 46:160–166

    Article  CAS  Google Scholar 

  8. Alvarez J, Montero M (2002) Measuring [Ca2+] in the endoplasmic reticulum with aequorin. Cell Calcium 32:251–260

    Article  CAS  Google Scholar 

  9. Cheung CY, Webb SE, Love DR et al (2011) Visualization, characterization and modulation of calcium signaling during the development of slow muscle cells in intact zebrafish embryos. Int J Dev Biol 55:153–174

    Article  CAS  Google Scholar 

  10. Vicente M, Salgado-Almario J, Soriano J et al (2019) Visualization of mitochondrial Ca2+ signals in skeletal muscle of Zebrafish embryos with bioluminescent indicators. Int J Mol Sci 20:E5409

    Article  Google Scholar 

  11. Bakayan A, Domingo B, Miyawaki A et al (2015) Imaging Ca(2+) activity in mammalian cells and zebrafish with a novel red-emitting aequorin variant. Pflugers Arch 467:2031–2042

    Article  CAS  Google Scholar 

  12. Vicente M, Salgado-Almario J, Collins MM et al (2021) Cardioluminescence in transgenic zebrafish embryos: a Ca2+ imaging tool to study drug effects and pathological modeling. bioRxiv:2021.05.06.442917

    Google Scholar 

  13. Kim TJ, Türkcan S, Pratx G (2017) Modular low-light microscope for imaging cellular bioluminescence and radioluminescence. Nat Protoc 12:1055–1076

    Article  CAS  Google Scholar 

  14. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675

    Article  CAS  Google Scholar 

  15. Bonora M, Giorgi C, Bononi A et al (2013) Subcellular calcium measurements in mammalian cells using jellyfish photoprotein aequorin-based probes. Nat Protoc 8:2105–2118

    Article  CAS  Google Scholar 

  16. Barrero MJ, Montero M, Alvarez J (1997) Dynamics of [Ca2+] in the endoplasmic reticulum and cytoplasm of intact HeLa cells: a COMPARATIVE STUDY*. J Biol Chem 272:27694–27699

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beatriz Domingo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Vicente, M., Salgado-Almario, J., Martínez-Sielva, A., Llopis, J., Domingo, B. (2022). Optimized Aequorin Reconstitution Protocol to Visualize Calcium Ion Transients in the Heart of Transgenic Zebrafish Embryos In Vivo. In: Kim, SB. (eds) Bioluminescence. Methods in Molecular Biology, vol 2524. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2453-1_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2453-1_20

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2452-4

  • Online ISBN: 978-1-0716-2453-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics