Skip to main content

Single-Molecule FRET Studies of RNA Structural Rearrangements and RNA-RNA Interactions

  • Protocol
  • First Online:
Riboregulator Design and Analysis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2518))

Abstract

RNA-guided regulation of gene expression is found in all cell types. In this mode of regulation, antisense interactions between the regulatory RNA and its target are typically facilitated by a protein partner. Single-molecule fluorescence microscopy is a powerful tool for dissecting the conformational states and intermediates that contribute to target recognition. This chapter describes protocols for studying target recognition by bacterial small RNAs and their chaperone Hfq on the single-molecule level, using a total internal reflection fluorescence microscope. The sections cover the design of suitable RNA substrates for sRNA-mRNA annealing reactions, preparation of internally labeled mRNA for detecting conformational changes in the target, and key steps of the data analysis. These protocols can be adapted to other RNA-binding proteins that chaperone RNA interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Wagner EGH, Romby P (2015) Small RNAs in bacteria and archaea: who they are, what they do, and how they do it. Adv Genet 90:133–208. https://doi.org/10.1016/bs.adgen.2015.05.001

    Article  CAS  PubMed  Google Scholar 

  2. Fröhlich KS, Haneke K, Papenfort K, Vogel J (2016) The target spectrum of sdsr small RNA in Salmonella. Nucleic Acids Res 44:10406–10422. https://doi.org/10.1093/nar/gkw632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Roy R, Hohng S, Ha T (2008) A practical guide to single-molecule FRET. Nat Methods 5:507–516. https://doi.org/10.1038/nmeth.1208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Jalihal AP, Lund PE, Walter NG (2019) Coming together: Rnas and proteins assemble under the single-molecule fluorescence microscope. Cold Spring Harb Perspect Biol 11. https://doi.org/10.1101/cshperspect.a032441

  5. Ray S, Widom JR, Walter NG (2018) Life under the microscope: single-molecule fluorescence highlights the RNA world. Chem Rev 118:4120–4155. https://doi.org/10.1021/acs.chemrev.7b00519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lerner E, Cordes T, Ingargiola A, Alhadid Y, Chung SY, Michalet X, Weiss S (2018) Toward dynamic structural biology: two decades of single-molecule förster resonance energy transfer. Science 359. https://doi.org/10.1126/science.aan1133

  7. Lerner E, Barth A, Hendrix J, Ambrose B, Birkedal V, Blanchard SC, Börner R, Chung HS, Cordes T, Craggs TD, Deniz AA, Diao J, Fei J, Gonzalez RL, Gopich IV, Ha T, Hanke CA, Haran G, Hatzakis NS, Hohng S, Hong SC, Hugel T, Ingargiola A, Joo C, Kapanidis AN, Kim HD, Laurence T, Lee NK, Lee TH, Lemke EA, Margeat E, Michaelis J, Michalet X, Myong S, Nettels D, Peulen TO, Ploetz E, Razvag Y, Robb NC, Schuler B, Soleimaninejad H, Tang C, Vafabakhsh R, Lamb DC, Seidel CAM, Weiss S, Boudker O (2021) FRET-based dynamic structural biology: Challenges, perspectives and an appeal for open-science practices. eLife 10. https://doi.org/10.7554/eLife.60416

  8. Chandradoss SD, Schirle NT, Szczepaniak M, Macrae IJ, Joo C (2015) A dynamic search process underlies microRNA targeting. Cell 162:96–107. https://doi.org/10.1016/j.cell.2015.06.032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Globyte V, Lee SH, Bae T, Kim J-S, Joo C (2019) CRISPR/Cas9 searches for a protospacer adjacent motif by lateral diffusion. EMBO J 38:e99466. https://doi.org/10.15252/EMBJ.201899466

    Article  PubMed  Google Scholar 

  10. Singh D, Sternberg SH, Fei J, Doudna JA, Ha T (2016) Real-time observation of DNA recognition and rejection by the RNA-guided endonuclease Cas9. Nat Commun 71(7):1–8. https://doi.org/10.1038/ncomms12778

    Article  CAS  Google Scholar 

  11. Friedman LJ, Gelles J (2015) Multi-wavelength single-molecule fluorescence analysis of transcription mechanisms. Methods 86:27–36. https://doi.org/10.1016/j.ymeth.2015.05.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. C van der F, AA H (2017) Methodologies for studying the spliceosome’s RNA dynamics with single-molecule FRET. Methods San Diego Calif 125:45–54. https://doi.org/10.1016/J.YMETH.2017.05.011

    Article  Google Scholar 

  13. Stephenson JD, Kenyon JC, Symmons MF, Lever AML (2016) Characterizing 3D RNA structure by single molecule FRET. Methods 103:57–67. https://doi.org/10.1016/J.YMETH.2016.02.004

    Article  CAS  PubMed  Google Scholar 

  14. Hwang H, Myong S (2014) Protein induced fluorescence enhancement (PIFE) for probing protein-nucleic acid interactions. Chem Soc Rev 43:1221–1229. https://doi.org/10.1039/c3cs60201j

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Brinster DR, Raper SE (2004) Synchronous colon and pancreatic cancers in a patient with Peutz-Jeghers syndrome: report of a case and review of the literature

    Google Scholar 

  16. Joo C, McKinney SA, Nakamura M, Rasnik I, Myong S, Ha T (2006) Real-time observation of RecA filament dynamics with single monomer resolution. Cell 126:515–527. https://doi.org/10.1016/j.cell.2006.06.042

    Article  CAS  PubMed  Google Scholar 

  17. Panja S, MaƂecka EM, Santiago-Frangos A, Woodson SA (2020) Quantitative analysis of RNA chaperone activity by native gel electrophoresis and fluorescence spectroscopy. Methods Mol Biol 2106:19–39. https://doi.org/10.1007/978-1-0716-0231-7_2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chauvier A, Cabello-Villegas J, Walter NG (2019) Probing RNA structure and interaction dynamics at the single molecule level. Methods 162–163:3–11. https://doi.org/10.1016/j.ymeth.2019.04.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Funatsu T, Harada Y, Tokunaga M, Saito K, Yanagida T (1995) Imaging of single fluorescent molecules and individual ATP turnovers by single myosin molecules in aqueous solution. Nature 374:555–559. https://doi.org/10.1038/374555a0

    Article  CAS  PubMed  Google Scholar 

  20. Tokunaga M, Kitamura K, Saito K, Iwane AH, Yanagida T (1997) Single molecule imaging of fluorophores and enzymatic reactions achieved by objective-type total internal reflection fluorescence microscopy. Biochem Biophys Res Commun 235:47–53. https://doi.org/10.1006/bbrc.1997.6732

    Article  CAS  PubMed  Google Scholar 

  21. Friedman LJ, Chung J, Gelles J (2006) Viewing dynamic assembly of molecular complexes by multi-wavelength single-molecule fluorescence. Biophys J 91:1023–1031. https://doi.org/10.1529/biophysj.106.084004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chen J, Dalal RV, Petrov AN, Tsai A, O’Leary SE, Chapin K, Cheng J, Ewan M, Hsiung PL, Lundquist P, Turner SW, Hsu DR, Puglisi JD (2014) High-throughput platform for real-time monitoring of biological processes by multicolor single-molecule fluorescence. Proc Natl Acad Sci U S A 111:664–669. https://doi.org/10.1073/pnas.1315735111

    Article  CAS  PubMed  Google Scholar 

  23. Hua B, Han KY, Zhou R, Kim H, Shi X, Abeysirigunawardena SC, Jain A, Singh D, Aggarwal V, Woodson SA, Ha T (2014) An improved surface passivation method for single-molecule studies. Nat Methods 11:1233–1236. https://doi.org/10.1038/nmeth.3143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Rinaldi AJ, Suddala KC, Walter NG (2015) Native purification and labeling of RNA for single molecule fluorescence studies. Methods Mol Biol 1240:63–95. https://doi.org/10.1007/978-1-4939-1896-6_6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Stark MR, Rader SD (2014) Efficient splinted ligation of synthetic RNA using RNA ligase. Methods Mol Biol 1126:137–149. https://doi.org/10.1007/978-1-62703-980-2_10

    Article  CAS  PubMed  Google Scholar 

  26. Solomatin S, Herschlag D (2009) Methods of site-specific labeling of RNA with fluorescent dyes. Methods Enzymol 469:47–68. https://doi.org/10.1016/s0076-6879(09)69003-0

    Article  CAS  PubMed  Google Scholar 

  27. Hellenkamp B, Schmid S, Doroshenko O, Opanasyuk O, KĂŒhnemuth R, Rezaei Adariani S, Ambrose B, Aznauryan M, Barth A, Birkedal V, Bowen ME, Chen H, Cordes T, Eilert T, Fijen C, Gebhardt C, Götz M, Gouridis G, Gratton E, Ha T, Hao P, Hanke CA, Hartmann A, Hendrix J, Hildebrandt LL, Hirschfeld V, Hohlbein J, Hua B, HĂŒbner CG, Kallis E, Kapanidis AN, Kim J-Y, Krainer G, Lamb DC, Lee NK, Lemke EA, Levesque B, Levitus M, McCann JJ, Naredi-Rainer N, Nettels D, Ngo T, Qiu R, Robb NC, Röcker C, Sanabria H, Schlierf M, Schröder T, Schuler B, Seidel H, Streit L, Thurn J, Tinnefeld P, Tyagi S, Vandenberk N, Vera AM, Weninger KR, WĂŒnsch B, Yanez-Orozco IS, Michaelis J, Seidel CAM, Craggs TD, Hugel T (2018) Precision and accuracy of single-molecule FRET measurements—a multi-laboratory benchmark study. Nat Methods 159(15):669–676. https://doi.org/10.1038/s41592-018-0085-0

    Article  CAS  Google Scholar 

  28. Friedman LJ, Gelles J (2015) Multi-wavelength single-molecule fluorescence analysis of transcription mechanisms. https://doi.org/10.1016/j.ymeth.2015.05.026

  29. McKinney SA, Joo C, Ha T (2006) Analysis of single-molecule FRET trajectories using hidden markov modeling. Biophys J 91:1941–1951. https://doi.org/10.1529/BIOPHYSJ.106.082487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Blanco M, Walter NG (2010) Analysis of complex single-molecule FRET time trajectories. Methods Enzymol 472:153–178. https://doi.org/10.1016/S0076-6879(10)72011-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kim H, Abeysirigunawarden SC, Chen K, Mayerle M, Ragunathan K, Luthey-Schulten Z, Ha T, Woodson SA (2014) Protein-guided RNA dynamics during early ribosome assembly. Nature 506:334–338. https://doi.org/10.1038/nature13039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Cordes T, Vogelsang J, Tinnefeld P (2009) On the mechanism of trolox as antiblinking and antibleaching reagent. J Am Chem Soc 131:5018–5019. https://doi.org/10.1021/JA809117Z

    Article  CAS  PubMed  Google Scholar 

  33. Rasnik I, McKinney SA, Ha T (2006) Nonblinking and long-lasting single-molecule fluorescence imaging. Nat Methods 3:891–893. https://doi.org/10.1038/nmeth934

    Article  CAS  PubMed  Google Scholar 

  34. Benesch RE, Benesch R (1953) Enzymatic removal of oxygen for polarography and related methods. Science 118:447–448. https://doi.org/10.1126/science.118.3068.447

    Article  CAS  PubMed  Google Scholar 

  35. Reuter JS, Mathews DH (2010) RNAstructure: software for RNA secondary structure prediction and analysis. BMC Bioinform 11. https://doi.org/10.1186/1471-2105-11-129

  36. Joo C, Ha T (2012) Labeling DNA (or RNA) for single-molecule FRET. Cold Spring Harb Protoc 7:1005–1008. https://doi.org/10.1101/pdb.prot071027

    Article  Google Scholar 

  37. Kaur H, Jamalidinan F, Condon SGF, Senes A, Hoskins AA (2019) Analysis of spliceosome dynamics by maximum likelihood fitting of dwell time distributions. Methods 153:13–21. https://doi.org/10.1016/J.YMETH.2018.11.014

    Article  CAS  PubMed  Google Scholar 

  38. MaƂecka EM, Woodson SA (2021) Stepwise sRNA targeting of structured bacterial mRNAs leads to abortive annealing. Mol Cell 81:1988–1999.e4. https://doi.org/10.1016/J.MOLCEL.2021.02.019

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Institutes of Health (R35GM136351 to S.A.W.). The authors thank Subrata Panja and Andrew Santiago-Frangos for contributing to early versions of these protocols.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah A. Woodson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

MaƂecka, E.M., Hua, B., Woodson, S.A. (2022). Single-Molecule FRET Studies of RNA Structural Rearrangements and RNA-RNA Interactions. In: Chappell, J., Takahashi, M.K. (eds) Riboregulator Design and Analysis. Methods in Molecular Biology, vol 2518. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2421-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2421-0_16

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2420-3

  • Online ISBN: 978-1-0716-2421-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics