Skip to main content

Eye Movement in Neurological Disorders

  • Protocol
  • First Online:
Eye Tracking

Part of the book series: Neuromethods ((NM,volume 183))

Abstract

Eye movements are an important aspect of neurological clinical assessment, as abnormal eye movements can indicate underlying neurological and disease processes. Eye-tracking recordings are also often performed following neurological injury or disease in order to study the underlying neurological mechanisms involved in controlling eye movement. The present chapter will review some major neurological conditions (Parkinson’s disease, Huntington’s disease, dementia, stroke, multiple sclerosis, and traumatic brain injury) that impact eye movements and the abnormalities that accompany them. The subjective clinical and objective examinations of eye movements are discussed and described in relation to neurological conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Leat SJ et al (2013) Binocular vision and eye movement disorders in older adults. Invest Ophthalmol Vis Sci 54:3798–3805

    Article  PubMed  Google Scholar 

  2. von Noorden GK, Preziosi TJ (1966) Eye movement recordings in neurological disorders. Arch Ophthalmol 76:162–171

    Article  Google Scholar 

  3. Fernandez-Duque D, Posner MI (2001) Brain imaging of attentional networks in normal and pathological states. J Clin Exp Neuropsychol 23:74–93

    Article  CAS  PubMed  Google Scholar 

  4. Coiner B et al (2019) Functional neuroanatomy of the human eye movement network: a review and atlas. Brain Struct Funct 224:2603–2617

    Article  CAS  PubMed  Google Scholar 

  5. Müri R, Cazzoli D, Nyffeler T (2019) Eye movements in neurology. In: Eye movement research. Springer, pp 749–774

    Chapter  Google Scholar 

  6. MacAskill MR, Anderson TJ (2016) Eye movements in neurodegenerative diseases. Curr Opin Neurol 29:61–68

    Article  CAS  PubMed  Google Scholar 

  7. Molitor RJ, Ko PC, Ally BA (2015) Eye movements in Alzheimer’s disease. J Alzheimers Dis 44:1–12

    Article  PubMed  PubMed Central  Google Scholar 

  8. Peltsch A, Hoffman A, Armstrong I, Pari G, Munoz D (2008) Saccadic impairments in Huntington’s disease. Exp Brain Res 186:457–469

    Article  CAS  PubMed  Google Scholar 

  9. Pinkhardt EH, Kassubek J (2011) Ocular motor abnormalities in Parkinsonian syndromes. Parkinsonism Relat Disord 17:223–230

    Article  PubMed  Google Scholar 

  10. Rodríguez-Labrada R, Vázquez-Mojena Y, Velázquez-Pérez L (2019) Eye movement abnormalities in neurodegenerative diseases. In: Mravicic, I. (editor), Eye Motility, London: IntechOpen, 1–17

    Google Scholar 

  11. Stuart S, Alcock L, Galna B, Lord S, Rochester L (2014) The measurement of visual sampling during real-world activity in Parkinson’s disease and healthy controls: a structured literature review. J Neurosci Methods 222:175–188

    Article  PubMed  Google Scholar 

  12. Stuart S, Galna B, Lord S, Rochester L, Godfrey A (2014) Quantifying saccades while walking: validity of a novel velocity-based algorithm for mobile eye tracking. In: 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE, 2014), pp 5739–5742

    Google Scholar 

  13. Noiret N, Vigneron B, Diogo M, Vandel P, Laurent É (2017) Saccadic eye movements: what do they tell us about aging cognition? Aging Neuropsychol Cognit 24:575–599

    Article  Google Scholar 

  14. Mucha A et al (2014) A brief vestibular/ocular motor screening (VOMS) assessment to evaluate concussions: preliminary findings. Am J Sports Med 42:2479–2486

    Article  PubMed  PubMed Central  Google Scholar 

  15. Yorke AM, Smith L, Babcock M, Alsalaheen B (2017) Validity and reliability of the vestibular/ocular motor screening and associations with common concussion screening tools. Sports Health 9:174–180

    Article  PubMed  Google Scholar 

  16. Conte L et al (2021) The eye-tracking technology in the healthcare settings: an observational, cross sectional, multicenter study. JDREAM 5:11–18

    Google Scholar 

  17. Tao L et al (2020) Eye tracking metrics to screen and assess cognitive impairment in patients with neurological disorders. Neurol Sci 41:1697–1704

    Article  PubMed  Google Scholar 

  18. Li W, Zhou W, Fei M, Xu Y, Yang E (2020) Eye Tracking methodology for diagnosing neurological diseases: a survey. In: 2020 Chinese Automation Congress (CAC) (IEEE, 2020), pp 2158–2162

    Google Scholar 

  19. Yousef A et al (2019) Subclinical saccadic eye movement dysfunction in pediatric multiple sclerosis. J Child Neurol 34:38–43

    Article  PubMed  Google Scholar 

  20. Larrazabal AJ, Cena CG, Martínez CE (2019) Video-oculography eye tracking towards clinical applications: a review. Comput Biol Med 108:57–66

    Article  CAS  PubMed  Google Scholar 

  21. Stuart S, Galna B, Delicato LS, Lord S, Rochester L (2017) Direct and indirect effects of attention and visual function on gait impairment in Parkinson’s disease: influence of task and turning. Eur J Neurosci 46:1703–1716

    Article  PubMed  Google Scholar 

  22. Stuart S, Lord S, Galna B, Rochester L (2018) Saccade frequency response to visual cues during gait in Parkinson’s disease: the selective role of attention. Eur J Neurosci 47:769–778

    Article  PubMed  Google Scholar 

  23. Vitório R et al (2013) Influence of visual feedback sampling on obstacle crossing behavior in people with Parkinson’s disease. Gait Posture 38:330–334

    Article  PubMed  Google Scholar 

  24. Vitório R et al (2014) Visual cues and gait improvement in Parkinson’s disease: which piece of information is really important? Neuroscience 277:273–280

    Article  PubMed  CAS  Google Scholar 

  25. Armstrong MJ, Okun MS (2020) Diagnosis and treatment of Parkinson disease: a review. JAMA 323:548–560

    Article  PubMed  Google Scholar 

  26. Armstrong RA (2017) Visual dysfunction in Parkinson’s disease. In: Chaudhuri KR, Titova N (eds) International review of neurobiology, vol 134. Academic Press, London, pp 921–946

    Google Scholar 

  27. Armstrong RA (2012) Visual signs and symptoms of dementia with Lewy bodies. Clin Exp Optom 95:621–630

    Article  PubMed  Google Scholar 

  28. Armstrong RA (2015) Oculo-visual dysfunction in Parkinson’s disease. J Parkinsons Dis 5:715–726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kassubek J, Danek A, Greenlee M, Pinkhardt E (2013) The eye as a window to the pathophysiology in Parkinson’s syndromes. Nervenarzt 84:909–917

    Article  CAS  PubMed  Google Scholar 

  30. Antoniades CA, Demeyere N, Kennard C, Humphreys GW, Hu MT (2015) Antisaccades and executive dysfunction in early drug-naive Parkinson’s disease: the discovery study. Mov Disord 30:843–847

    Article  PubMed  Google Scholar 

  31. Mosimann UP et al (2005) Saccadic eye movement changes in Parkinson’s disease dementia and dementia with Lewy bodies. Brain 128:1267–1276

    Article  PubMed  Google Scholar 

  32. Pinkhardt EH et al (2012) Eye movement impairments in Parkinson’s disease: possible role of extradopaminergic mechanisms. BMC Neurol 12:1–8

    Article  Google Scholar 

  33. Srivastava A et al (2014) Saccadic eye movements in Parkinson’s disease. Indian J Ophthalmol 62:538

    Article  PubMed  PubMed Central  Google Scholar 

  34. Stuart S et al (2019) Pro-saccades predict cognitive decline in Parkinson’s disease: ICICLE-PD. Mov Disord 34:1690–1698

    Article  PubMed  Google Scholar 

  35. Wong OWH et al (2018) Eye movement parameters and cognitive functions in Parkinson’s disease patients without dementia. Parkinsonism Relat Disord 52:43–48

    Article  PubMed  Google Scholar 

  36. Pinkhardt EH et al (2009) Comparison of smooth pursuit eye movement deficits in multiple system atrophy and Parkinson’s disease. J Neurol 256:1438–1446

    Article  PubMed  Google Scholar 

  37. White OB, Saint-Cyr JA, Tomlinson RD, Sharpe JA (1983) Ocular motor deficits in Parkinson’s disease: II. Control of the saccadic and smooth pursuit systems. Brain 106:571–587

    Article  PubMed  Google Scholar 

  38. Pretegiani E, Optican LM (2017) Eye movements in Parkinson’s disease and inherited parkinsonian syndromes. Front Neurol 8:592

    Article  PubMed  PubMed Central  Google Scholar 

  39. de Boer C, van der Steen J, Mattace-Raso F, Boon AJW, Pel JJM (2016) The effect of neurodegeneration on visuomotor behavior in Alzheimer’s disease and Parkinson’s disease. Mot Control 20:1–20

    Article  Google Scholar 

  40. Marx S et al (2012) Validation of mobile eye-tracking as novel and efficient means for differentiating progressive supranuclear palsy from Parkinson’s disease. Front Behav Neurosci 6:88

    Article  PubMed  PubMed Central  Google Scholar 

  41. Fukushima K, Fukushima J, Barnes GR (2017) Clinical application of eye movement tasks as an aid to understanding Parkinson’s disease pathophysiology. Exp Brain Res 235:1309–1321

    Article  PubMed  Google Scholar 

  42. Walker FO (2007) Huntington’s disease. Lancet 369:218–228

    Article  CAS  PubMed  Google Scholar 

  43. Roos RAC (2010) Huntington’s disease: a clinical review. Orphanet J Rare Dis 5:40

    Article  PubMed  PubMed Central  Google Scholar 

  44. McColgan P, Tabrizi SJ (2018) Huntington’s disease: a clinical review. Eur J Neurol 25:24–34

    Article  CAS  PubMed  Google Scholar 

  45. Blekher T et al (2009) Visual scanning and cognitive performance in prediagnostic and early-stage Huntington’s disease. Mov Disord 24:533–540

    Article  PubMed  PubMed Central  Google Scholar 

  46. Beenen N, Büttner U, Lange HW (1986) The diagnostic value of eye movement recording in patients with Huntington’s disease and their offspring. Electroencephalogr Clin Neurophysiol 63:119–127

    Article  CAS  PubMed  Google Scholar 

  47. Ali FR, Michell AW, Barker RA, Carpenter RHS (2006) The use of quantitative oculometry in the assessment of Huntington’s disease. Exp Brain Res 169:237–245

    Article  CAS  PubMed  Google Scholar 

  48. Lasker AG, Zee DS (1997) Ocular motor abnormalities in Huntington’s disease. Vis Res 37:3639–3645

    Article  CAS  PubMed  Google Scholar 

  49. Leigh RJ, Newman SA, Folstein SE, Lasker AG, Jensen BA (1983) Abnormal ocular motor control in Huntington’s disease. Neurology 33:1268

    Article  CAS  PubMed  Google Scholar 

  50. Lasker AG, Zee DS, Hain TC, Folstein SE, Singer HS (1987) Saccades in Huntington’s disease. Neurology 37:364

    Article  CAS  PubMed  Google Scholar 

  51. Lasker AG, Zee DS, Hain TC, Folstein SE, Singer HS (1988) Saccades in Huntington’s disease. Neurology 38:427

    Article  CAS  PubMed  Google Scholar 

  52. Klöppel S et al (2008) White matter connections reflect changes in voluntary-guided saccades in pre-symptomatic Huntington’s disease. Brain 131:196–204

    Article  PubMed  Google Scholar 

  53. Thieben MJ et al (2002) The distribution of structural neuropathology in pre-clinical Huntington’s disease. Brain 125:1815–1828

    Article  CAS  PubMed  Google Scholar 

  54. Elahi FM, Miller BL (2017) A clinicopathological approach to the diagnosis of dementia. Nat Rev Neurol 13:457–476

    Article  PubMed  PubMed Central  Google Scholar 

  55. Armstrong R, Kergoat H (2015) Oculo-visual changes and clinical considerations affecting older patients with dementia. Ophthalmic Physiol Opt 35:352–376

    Article  PubMed  Google Scholar 

  56. Pham TM et al (2018) Trends in dementia diagnosis rates in UK ethnic groups: analysis of UK primary care data. Clin Epidemiol 10:949–960

    Article  PubMed  PubMed Central  Google Scholar 

  57. Weller J, Budson A (2018) Current understanding of Alzheimer’s disease diagnosis and treatment. F1000Res 7:F1000 Faculty Rev-1161

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Anand A, Patience AA, Sharma N, Khurana N (2017) The present and future of pharmacotherapy of Alzheimer’s disease: a comprehensive review. Eur J Pharmacol 815:364–375

    Article  CAS  PubMed  Google Scholar 

  59. Hampel H et al (2018) The cholinergic system in the pathophysiology and treatment of Alzheimer’s disease. Brain 141:1917–1933

    Article  PubMed  PubMed Central  Google Scholar 

  60. Alosco ML et al (2018) A clinicopathological investigation of White matter hyperintensities and Alzheimer’s disease neuropathology. J Alzheimers Dis 63:1347–1360

    Article  PubMed  PubMed Central  Google Scholar 

  61. Pereira MLG d F et al (2020) Saccadic eye movements associated with executive function decline in mild cognitive impairment and Alzheimer’s disease. Alzheimers Dement 16:e040036

    Article  Google Scholar 

  62. Shakespeare TJ et al (2015) Abnormalities of fixation, saccade and pursuit in posterior cortical atrophy. Brain 138:1976–1991

    Article  PubMed  PubMed Central  Google Scholar 

  63. Boxer AL et al (2012) Saccade abnormalities in autopsy-confirmed frontotemporal lobar degeneration and Alzheimer disease. Arch Neurol 69:509–517

    Article  PubMed  PubMed Central  Google Scholar 

  64. Bylsma FW et al (1995) Changes in visual fixation and saccadic eye movements in Alzheimer’s disease. Int J Psychophysiol 19:33–40

    Article  CAS  PubMed  Google Scholar 

  65. Fernández G, Castro LR, Schumacher M, Agamennoni OE (2015) Diagnosis of mild Alzheimer disease through the analysis of eye movements during reading. J Integr Neurosci 14:121–133

    Article  PubMed  Google Scholar 

  66. Fernández G et al (2013) Eye movement alterations during reading in patients with early Alzheimer disease. Invest Ophthalmol Vis Sci 54:8345–8352

    Article  PubMed  Google Scholar 

  67. Kapoula Z et al (2014) Distinctive features of microsaccades in Alzheimer’s disease and in mild cognitive impairment. Age 36:535–543

    Article  CAS  PubMed  Google Scholar 

  68. Noiret N et al (2018) Saccadic eye movements and attentional control in Alzheimer’s disease. Arch Clin Neuropsychol 33:1–13

    Article  PubMed  Google Scholar 

  69. Yang Q, Wang T, Su N, Xiao S, Kapoula Z (2013) Specific saccade deficits in patients with Alzheimer’s disease at mild to moderate stage and in patients with amnestic mild cognitive impairment. Age 35:1287–1298

    Article  CAS  PubMed  Google Scholar 

  70. Freitas Pereira MLG, Camargo MVZA, Aprahamian I, Forlenza OV (2014) Eye movement analysis and cognitive processing: detecting indicators of conversion to Alzheimer’s disease. Neuropsychiatr Dis Treat 10:1273

    Article  Google Scholar 

  71. McKeith IG et al (2017) Diagnosis and management of dementia with Lewy bodies. Neurology 89:88

    Article  PubMed  PubMed Central  Google Scholar 

  72. Lippa CF et al (2007) DLB and PDD boundary issues. Neurology 68:812

    Article  CAS  PubMed  Google Scholar 

  73. Friedman JH (2018) Dementia with Lewy bodies and Parkinson disease dementia: it is the same disease! Parkinsonism Relat Disord 46:S6–S9

    Article  PubMed  Google Scholar 

  74. Surendranathan A et al (2020) Clinical diagnosis of Lewy body dementia. BJPsych Open 6:e61

    Article  PubMed  PubMed Central  Google Scholar 

  75. Barber R, Panikkar A, McKeith IG (2001) Dementia with Lewy bodies: diagnosis and management. Int J Geriatr Psychiatry 16:S12–S18

    Article  PubMed  Google Scholar 

  76. Kapoula Z et al (2010) Spread deficits in initiation, speed and accuracy of horizontal and vertical automatic saccades in dementia with Lewy bodies. Front Neurol 1:138

    Article  PubMed  PubMed Central  Google Scholar 

  77. Zoi K et al (2010) Preservation of automatic ocular saccades in healthy elderly: alteration in patients with dementia with Lewy body. Psychol Neuropsychiatr Vieil 8:295–306

    Google Scholar 

  78. Serra A, Chisari CG, Matta M (2018) Eye movement abnormalities in multiple sclerosis: pathogenesis, modeling, and treatment. Front Neurol 9:31

    Article  PubMed  PubMed Central  Google Scholar 

  79. Olek MJ (2021) Multiple Sclerosis. Ann Intern Med 174:ITC81–ITC96

    Article  PubMed  Google Scholar 

  80. De Santi L et al (2011) Pursuit ocular movements in multiple sclerosis: a video-based eye-tracking study. Neurol Sci 32:67–71

    Article  PubMed  Google Scholar 

  81. Niestroy A, Rucker JC, Leigh RJ (2007) Neuro-ophthalmologic aspects of multiple sclerosis: using eye movements as a clinical and experimental tool. Clin Ophthalmol 1:267

    PubMed  PubMed Central  Google Scholar 

  82. Gil-Casas A, Piñero DP, Molina-Martin A (2020) Binocular, accommodative and oculomotor alterations in multiple sclerosis: a review. Semin Ophthalmol 35:103–115

    Article  PubMed  Google Scholar 

  83. Frohman EM, Frohman TC, Zee DS, McColl R, Galetta S (2005) The neuro-ophthalmology of multiple sclerosis. Lancet Neurol 4:111–121

    Article  PubMed  Google Scholar 

  84. Hoff JM, Dhayalan M, Midelfart A, Tharaldsen AR, Bø L (2019) Visual dysfunction in multiple sclerosis. Tidsskrift for Den norske legeforening. 2:139(11)

    Google Scholar 

  85. Ferreira MB et al (2018) Relationships between neuropsychological and antisaccade measures in multiple sclerosis patients. PeerJ 6:e5737

    Article  PubMed  PubMed Central  Google Scholar 

  86. Bijvank JAN et al (2019) Quantification of visual fixation in multiple sclerosis. Invest Ophthalmol Vis Sci 60:1372–1383

    Article  Google Scholar 

  87. Rempe T et al (2021) Quantification of smooth pursuit dysfunction in multiple sclerosis. Mult Scler Relat Disord 54:103073

    Article  PubMed  Google Scholar 

  88. Santinelli FB et al (2019) Saccadic eye movements are able to reduce body sway in mildly-affected people with multiple sclerosis. Mult Scler Relat Disord 30:63–68

    Article  PubMed  Google Scholar 

  89. Kuriakose D, Xiao Z (2020) Pathophysiology and treatment of stroke: present status and future perspectives. Int J Mol Sci 21:7609

    Article  CAS  PubMed Central  Google Scholar 

  90. Murphy SJ, Werring DJ (2020) Stroke: causes and clinical features. Medicine 48(9):561–566

    Article  PubMed  Google Scholar 

  91. Famitafreshi H, Karimian M (2019) Overview of advances in the pathophysiology and treatment of stroke: a new plan for stroke treatment. Open Biol J 7:39–44

    Article  Google Scholar 

  92. Pollock A, Hazelton C, Brady M (2011) Visual problems after stroke: a survey of current practice by occupational therapists working in UK stroke inpatient settings. Top Stroke Rehabil 18:643–651

    Article  PubMed  Google Scholar 

  93. Rowe F et al (2009) Visual impairment following stroke: do stroke patients require vision assessment? Age Ageing 38:188–193

    Article  PubMed  Google Scholar 

  94. Ciuffreda KJ (2007) Vision, perception, and cognition: a manual for the evaluation and treatment of the adult with acquired brain injury. LWW

    Google Scholar 

  95. Clisby C (1995) Visual assessment of patients with cerebrovascular accident on the elderly care wards. Br Orthopt J 52:38–40

    Google Scholar 

  96. Hepworth LR, Rowe FJ (2016) Visual impairment following stroke-the impact on quality of life: a systematic review. Ophthalmol Res 5:1–15

    Google Scholar 

  97. Bogousslavsky J, Meienberg O (1987) Eye-movement disorders in brain-stem and cerebellar stroke. Arch Neurol 44:141–148

    Article  CAS  PubMed  Google Scholar 

  98. Moncayo J, Bogousslavsky J (2012) Eye movement abnormalities. Manifestations of. Stroke 30:13–16

    Google Scholar 

  99. BRAZIS PW (1992) Ocular motor abnormalities in Wallenberg’s lateral medullary syndrome. In: Mayo Clinic proceedings, vol 67. Elsevier, pp 365–368

    Google Scholar 

  100. Brazinova A et al (2021) Epidemiology of traumatic brain injury in Europe: a living systematic review. J Neurotrauma 38:1411–1440

    Article  PubMed  PubMed Central  Google Scholar 

  101. Dadas A, Washington J, Diaz-Arrastia R, Janigro D (2018) Biomarkers in traumatic brain injury (TBI): a review. Neuropsychiatr Dis Treat 14:2989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Graham NS, Sharp DJ (2019) Understanding neurodegeneration after traumatic brain injury: from mechanisms to clinical trials in dementia. J Neurol Neurosurg Psychiatry 90:1221–1233

    Article  PubMed  Google Scholar 

  103. Mayer AR, Quinn DK, Master CL (2017) The spectrum of mild traumatic brain injury: a review. Neurology 89:623–632

    Article  PubMed  PubMed Central  Google Scholar 

  104. Lumba-Brown A et al (2018) Centers for disease control and prevention guideline on the diagnosis and management of mild traumatic brain injury among children. JAMA Pediatr 172:e182853–e182853

    Article  PubMed  PubMed Central  Google Scholar 

  105. Armstrong RA (2018) Visual problems associated with traumatic brain injury. Clin Exp Optom 101:716–726

    Article  PubMed  Google Scholar 

  106. Kapoor N, Ciuffreda KJ (2002) Vision disturbances following traumatic brain injury. Curr Treat Options Neurol 4:271–280

    Article  PubMed  Google Scholar 

  107. Stuart S et al (2020) The measurement of eye movements in mild traumatic brain injury: a structured review of an emerging area. Front Sports Act Living 2:5

    Article  PubMed  PubMed Central  Google Scholar 

  108. Hunfalvay M et al (2019) Horizontal and vertical self-paced saccades as a diagnostic marker of traumatic brain injury. Concussion 4:CNC60

    Article  PubMed  PubMed Central  Google Scholar 

  109. Hunfalvay M et al (2020) Vertical smooth pursuit as a diagnostic marker of traumatic brain injury. Concussion 5:CNC69

    Article  PubMed  PubMed Central  Google Scholar 

  110. Mani R, Asper L, Khuu SK (2018) Deficits in saccades and smooth-pursuit eye movements in adults with traumatic brain injury: a systematic review and meta-analysis. Brain Inj 32:1315–1336

    Article  PubMed  Google Scholar 

  111. Samadani U et al (2015) Eye tracking detects disconjugate eye movements associated with structural traumatic brain injury and concussion. J Neurotrauma 32:548–556

    Article  PubMed  PubMed Central  Google Scholar 

  112. Snegireva N, Derman W, Patricios J, Welman K (2018) Eye tracking technology in sports-related concussion: a systematic review and meta-analysis. Physiol Meas 39:12TR01

    Article  CAS  PubMed  Google Scholar 

  113. Maruta J, Spielman LA, Rajashekar U, Ghajar J (2017) Visual tracking in development and aging. Front Neurol 8:640

    Article  PubMed  PubMed Central  Google Scholar 

  114. Antoniades CA, Barker RA (2008) The search for biomarkers in Parkinson’s disease: a critical review. Expert Rev Neurother 8:1841–1852

    Article  PubMed  Google Scholar 

  115. Stuart S, Galna B, Lord S, Rochester L (2015) A protocol to examine vision and gait in Parkinson’s disease: impact of cognition and response to visual cues. F1000Res 4:1379

    Article  PubMed  Google Scholar 

  116. Hershey LA et al (1983) Saccadic latency measurements in dementia. Arch Neurol 40:592–593

    Article  CAS  PubMed  Google Scholar 

  117. Stuart S et al (2019) Validation of a velocity-based algorithm to quantify saccades during walking and turning in mild traumatic brain injury and healthy controls. Physiol Meas 40:044006

    Article  PubMed  PubMed Central  Google Scholar 

  118. Andersson R, Larsson L, Holmqvist K, Stridh M, Nyström M (2017) One algorithm to rule them all? An evaluation and discussion of ten eye movement event-detection algorithms. Behav Res Methods 49:616–637

    Article  PubMed  Google Scholar 

  119. Stuart S et al (2019) Eye-tracker algorithms to detect saccades during static and dynamic tasks: a structured review. Physiol Meas 40:02TR01

    Article  PubMed  Google Scholar 

  120. Antoniades C et al (2013) An internationally standardised antisaccade protocol. Vis Res 84:1–5

    Article  PubMed  Google Scholar 

  121. Nij Bijvank J et al (2018) A standardized protocol for quantification of saccadic eye movements: DEMoNS. PLoS One 13:e0200695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Pelz JB, Canosa R (2001) Oculomotor behavior and perceptual strategies in complex tasks. Vis Res 41:3587–3596

    Article  CAS  PubMed  Google Scholar 

  123. Kasneci E, Black AA, Wood JM (2017) Eye-tracking as a tool to evaluate functional ability in everyday tasks in glaucoma. J Ophthalmol 2017:6425913

    PubMed  PubMed Central  Google Scholar 

  124. Stuart S et al (2018) Do you see what I see? Mobile eye-tracker contextual analysis and inter-rater reliability. Med Biol Eng Comput 56:289–296

    Article  CAS  PubMed  Google Scholar 

  125. Stuart S, Lord S, Hill E, Rochester L (2016) Gait in Parkinson’s disease: a visuo-cognitive challenge. Neurosci Biobehav Rev 62:76–88

    Article  PubMed  Google Scholar 

  126. Lohnes CA, Earhart GM (2011) Saccadic eye movements are related to turning performance in Parkinson disease. J Parkinsons Dis 1:109–118

    Article  PubMed  PubMed Central  Google Scholar 

  127. Beck EN, Ehgoetz Martens KA, Almeida QJ (2015) Freezing of gait in Parkinson’s disease: an overload problem? PLoS One 10:e0144986

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Hebert JR, Corboy JR, Vollmer T, Forster JE, Schenkman M (2018) Efficacy of balance and eye-movement exercises for persons with multiple sclerosis (BEEMS). Neurology 90:e797–e807

    Article  PubMed  Google Scholar 

  129. Kapoor N, Ciuffreda KJ, Han Y (2004) Oculomotor rehabilitation in acquired brain injury: a case series. Arch Phys Med Rehabil 85:1667–1678

    Article  PubMed  Google Scholar 

  130. Kapoor N, Ciuffreda KJ (2018) Assessment of neuro-optometric rehabilitation using the developmental eye movement (DEM) test in adults with acquired brain injury. J Opt 11:103–112

    Article  Google Scholar 

  131. Simpson-Jones ME, Hunt AW (2019) Vision rehabilitation interventions following mild traumatic brain injury: a scoping review. Disabil Rehabil 41:2206–2222

    Article  PubMed  Google Scholar 

  132. Turton AJ et al (2015) Visual search training in occupational therapy–an example of expert practice in community-based stroke rehabilitation. Br J Occup Ther 78:674–687

    Article  Google Scholar 

  133. Keane S, Turner C, Sherrington C, Beard JR (2006) Use of fresnel prism glasses to treat stroke patients with hemispatial neglect. Arch Phys Med Rehabil 87:1668–1672

    Article  PubMed  Google Scholar 

  134. Ha S-Y, Sung Y-H (2020) Effects of Fresnel prism glasses on balance and gait in stroke patients with hemiplegia: a randomized controlled trial pilot study. Technol Health Care 28:625–633

    Article  PubMed  Google Scholar 

  135. Alvarez TL et al (2021) Underlying neurological mechanisms associated with symptomatic convergence insufficiency. Sci Rep 11:1–10

    Article  CAS  Google Scholar 

  136. Racette BA, Gokden M, Tychsen L, Perlmutter JS (1999) Convergence insufficiency in idiopathic Parkinson’s disease responsive to levodopa. Strabismus 7:169–174

    Article  CAS  PubMed  Google Scholar 

  137. DuPrey KM et al (2017) Convergence insufficiency identifies athletes at risk of prolonged recovery from sport-related concussion. Am J Sports Med 45:2388–2393

    Article  PubMed  Google Scholar 

  138. Convergence Insufficiency Treatment Trial (CITT) Study Group (2008) The convergence insufficiency treatment trial: design, methods, and baseline data. Ophthalmic Epidemiol 15:24–36

    Article  Google Scholar 

  139. Lavrich JB (2010) Convergence insufficiency and its current treatment. Curr Opin Ophthalmol 21:356–360

    Article  PubMed  Google Scholar 

  140. Scheiman M et al (2002) A survey of treatment modalities for convergence insufficiency. Optom Vis Sci 79:151–157

    Article  PubMed  Google Scholar 

  141. Santo AL, Race ML, Teel EF (2020) Near point of convergence deficits and treatment following concussion: a systematic review. J Sport Rehabil 29:1179–1193

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by a Parkinson’s Foundation Postdoctoral Fellowship (PF-FBS-1898) and Clinical Research Award (PF-CRA-2073) (PI: Dr. Samuel Stuart). Additionally, this research was supported by an A1 Grant from the Private Physiotherapy Educational Foundation (PPEF - #368) (PI: Stuart). Julia Das was supported by a collaborative studentship between Northumbria University and Senaptec Inc., Lisa Graham was supported by a collaborative studentship between Northumbria University and Head Diagnostics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel Stuart .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Das, J. et al. (2022). Eye Movement in Neurological Disorders. In: Stuart, S. (eds) Eye Tracking. Neuromethods, vol 183. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2391-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2391-6_11

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2390-9

  • Online ISBN: 978-1-0716-2391-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics