Skip to main content

Processing and Cryopreservation of Blood, Cancer Tissues, and Cancer Cells for Viable Biobanking

  • Protocol
  • First Online:
Cancer Cell Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2508))

  • 2958 Accesses

Abstract

Biorepositories of fresh frozen and formalin-fixed paraffin-embedded tissues have been foundational to many molecular cancer research studies. Collections of these materials, however, do not enable the establishment of short-term cultures, cell lines, or patient-derived xenograft models for functional studies. Also, intact dissociated cells that are required for some single-cell analyses cannot be obtained from these material types. Adding viable tumor banking to the repertoire of routine cancer biobanking would increase the value of samples collected. This chapter outlines procedures for processing and storing blood and tissue specimens viably in order to expand the future utility of the samples collected. We provide practical tips that can be used by banks and other researchers seeking to incorporate the cryopreservation of viable materials as part of their overall biobanking strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abel L, Durmaz A, Hu R et al (2021) Impact of immediate cryopreservation on the establishment of patient derived xenografts from head and neck cancer patients. J Transl Med 19(1):180

    Article  CAS  Google Scholar 

  2. Beato F, Reverón D, Dezsi KB et al (2021) Establishing a living biobank of patient-derived organoids of intraductal papillary mucinous neoplasms of the pancreas. Lab Investig 101(2):204–217

    Article  Google Scholar 

  3. Tsai YH, Czerwinski M, Wu A et al (2018) A method for cryogenic preservation of human biopsy specimens and subsequent organoid culture. Cell Mol Gastroenterol Hepatol 6(2):218–222

    Article  Google Scholar 

  4. He A, Powell S, Kyle M et al (2020) Cryopreservation of viable human tissues: renewable resource for viable tissue, cell lines, and organoid development. Biopreserv Biobank 18(3):222–227

    Article  CAS  Google Scholar 

  5. Wohnhaas CT, Leparc GG, Fernandez-Albert F et al (2019) DMSO cryopreservation is the method of choice to preserve cells for droplet-based single-cell RNA sequencing. Sci Rep 9(1):10699

    Article  Google Scholar 

  6. Slyper M, Porter CBM, Ashenberg O et al (2020) A single-cell and single-nucleus RNA-Seq toolbox for fresh and frozen human tumors. Nat Med 26(5):792–802

    Article  CAS  Google Scholar 

  7. Jacob F, Ming GL, Song H (2020) Generation and biobanking of patient-derived glioblastoma organoids and their application in CAR T cell testing. Nat Protoc 15(12):4000–4033

    Article  CAS  Google Scholar 

  8. Jacob F, Salinas RD, Zhang DY et al (2020) A patient-derived glioblastoma organoid model and biobank recapitulates inter- and intra-tumoral heterogeneity. Cell 180(1):188–204

    Article  CAS  Google Scholar 

  9. Leelatian N, Doxie DB, Greenplate AR et al (2017) Preparing viable single cells from human tissue and tumors for cytomic analysis. Curr Protoc Mol Biol 118:25C.1.1–25C.1.23

    Article  CAS  Google Scholar 

  10. Bojic S, Murray A, Bentley BL et al (2021) Winter is coming: the future of cryopreservation. BMC Biol 19(1):56

    Article  Google Scholar 

  11. Valyi-Nagy K, Betsou F, Susma A, Valyi-Nagy T (2021) Optimization of viable glioblastoma cryopreservation for establishment of primary tumor cell cultures. Biopreserv Biobank 19(1):60–66

    Article  CAS  Google Scholar 

  12. Lin GL, Monje M (2017) A protocol for rapid post-mortem cell culture of diffuse intrinsic pontine glioma (DIPG). J Vis Exp 121:55360

    Google Scholar 

  13. Mallone R, Mannering SI, Brooks-Worrell BM et al (2011) Isolation and preservation of peripheral blood mononuclear cells for analysis of islet antigen-reactive T cell responses: position statement of the T-Cell Workshop Committee of the Immunology of Diabetes Society. Clin Exp Immunol 163(1):33–49

    Article  CAS  Google Scholar 

  14. Bull M, Lee D, Stucky J et al (2007) Defining blood processing parameters for optimal detection of cryopreserved antigen-specific responses for HIV vaccine trials. J Immunol Methods 322(1–2):57–69

    Article  CAS  Google Scholar 

  15. McKenna KC, Beatty KM, Vicetti Miguel R, Bilonick RA (2009) Delayed processing of blood increases the frequency of activated CD11b+ CD15+ granulocytes which inhibit T cell function. J Immunol Methods 341(1–2):68–75

    Article  CAS  Google Scholar 

  16. Lam NY, Rainer TH, Chiu RW, Lo YM (2004) EDTA is a better anticoagulant than heparin or citrate for delayed blood processing for plasma DNA analysis. Clin Chem 50(1):256–257

    Article  CAS  Google Scholar 

  17. Barra GB, Santa Rita TH, de Almeida VJ et al (2015) EDTA-mediated inhibition of DNases protects circulating cell-free DNA from ex vivo degradation in blood samples. Clin Biochem 48(15):976–981

    Article  CAS  Google Scholar 

  18. Parpart-Li S, Bartlett B, Popoli M et al (2017) The effect of preservative and temperature on the analysis of circulating tumor DNA. Clin Cancer Res 23(10):2471–2477

    Article  CAS  Google Scholar 

  19. Risberg B, Tsui DWY, Biggs H et al (2018) Effects of collection and processing procedures on plasma circulating cell-free DNA from cancer patients. J Mol Diagn 20(6):883–892

    Article  CAS  Google Scholar 

  20. Grievink HW, Luisman T, Kluft C et al (2016) Comparison of three isolation techniques for human peripheral blood mononuclear cells: cell recovery and viability, population composition, and cell functionality. Biopreserv Biobank 14(5):410–415

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer A. Chan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Chan, J.A., Vercauteren, S.M. (2022). Processing and Cryopreservation of Blood, Cancer Tissues, and Cancer Cells for Viable Biobanking. In: Christian, S.L. (eds) Cancer Cell Biology. Methods in Molecular Biology, vol 2508. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2376-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2376-3_5

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2375-6

  • Online ISBN: 978-1-0716-2376-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics