Skip to main content

Using CRISPR-Cas9 to Dissect Cancer Mutations in Cell Lines

  • Protocol
  • First Online:
Cancer Cell Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2508))

Abstract

The CRISPR-Cas9 technology has revolutionized the scope and pace of biomedical research, enabling the targeting of specific genomic sequences for a wide spectrum of applications. Here we describe assays to functionally interrogate mutations identified in cancer cells utilizing both CRISPR-Cas9 nuclease and base editors. We provide guidelines to interrogate known cancer driver mutations or functionally screen for novel vulnerability mutations with these systems in characterized human cancer cell lines. The proposed platform should be transferable to primary cancer cells, opening up a path for precision oncology on a functional level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stratton MR, Campbell PJ, Futreal PA (2009) The cancer genome. Nature 458:719–724. https://doi.org/10.1038/nature07943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Martincorena I, Campbell PJ (2015) Somatic mutation in cancer and normal cells. Science 349:1483–1489. https://doi.org/10.1126/science.aab4082

    Article  CAS  PubMed  Google Scholar 

  3. Gnad F, Baucom A, Mukhyala K, Manning G, Zhang Z (2013) Assessment of computational methods for predicting the effects of missense mutations in human cancers. BMC Genomics 14(Suppl 3):S7. https://doi.org/10.1186/1471-2164-14-S3-S7

    Article  PubMed  PubMed Central  Google Scholar 

  4. Weghorn D, Sunyaev S (2017) Bayesian inference of negative and positive selection in human cancers. Nat Genet 49:1785–1788. https://doi.org/10.1038/ng.3987

    Article  CAS  PubMed  Google Scholar 

  5. Gonzalez-Perez A, López-Bigas N (2012) Functional impact bias reveals cancer drivers. Nucleic Acids Res 40:e169–e169. https://doi.org/10.1093/nar/gks743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lawrence MS, Stojanov P, Polak P et al (2013) Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature 499(7457):214–218. https://doi.org/10.1038/nature12213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mularoni L, Sabarinathan R, Deu-Pons J et al (2016) OncodriveFML: a general framework to identify coding and non-coding regions with cancer driver mutations. Genome Biol 17(1):128. https://doi.org/10.1186/s13059-016-0994-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Martincorena I, Raine KM, Gerstung M et al (2017) Universal patterns of selection in cancer and somatic tissues. Cell 171:1029–1041.e21. https://doi.org/10.1016/j.cell.2017.09.042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Buljan M, Blattmann P, Aebersold R, Boutros M (2018) Systematic characterization of pan-cancer mutation clusters. Mol Syst Biol 14:e7974-19. https://doi.org/10.15252/msb.20177974

    Article  CAS  Google Scholar 

  10. Dietlein F, Weghorn D, Taylor-Weiner A et al (2020) Identification of cancer driver genes based on nucleotide context. Nat Genet 52:208–218. https://doi.org/10.1038/s41588-019-0572-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Malone ER, Oliva M, Sabatini PJB et al (2020) Molecular profiling for precision cancer therapies. Genome Med 12(1):1–19. https://doi.org/10.1186/s13073-019-0703-1

    Article  Google Scholar 

  12. Koo T, Yoon A-R, Cho H-Y et al (2017) Selective disruption of an oncogenic mutant allele by CRISPR/Cas9 induces efficient tumor regression. Nucleic Acids Res 45:7897–7908. https://doi.org/10.1093/nar/gkx490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gebler C, Lohoff T, Paszkowski-Rogacz M et al (2017) Inactivation of cancer mutations utilizing CRISPR/Cas9. J Natl Cancer Inst 109:1546. https://doi.org/10.1093/jnci/djw183

    Article  CAS  Google Scholar 

  14. Yang M, Wei H, Wang Y et al (2017) Targeted disruption of V600E-mutant BRAF gene by CRISPR-Cpf1. Mol Ther Nucleic Acid 8:450–458. https://doi.org/10.1016/j.omtn.2017.05.009

    Article  CAS  Google Scholar 

  15. Kim W, Lee S, Kim HS et al (2018) Targeting mutant KRAS with CRISPR-Cas9 controls tumor growth. Genome Res 28:374–382. https://doi.org/10.1101/gr.223891.117

    Article  CAS  PubMed Central  Google Scholar 

  16. Rees HA, Liu DR (2018) Base editing: precision chemistry on the genome and transcriptome of living cells. Nat Rev Genet 19:770–788. https://doi.org/10.1038/s41576-018-0059-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sürün D, Schneider A, Mircetic J et al (2020) Efficient generation and correction of mutations in human iPS cells utilizing mRNAs of CRISPR base editors and prime editors. Genes (Basel) 11:511–519. https://doi.org/10.3390/genes11050511

    Article  CAS  Google Scholar 

  18. Barretina J, Caponigro G, Stransky N et al (2012) The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 483(7391):603–607. https://doi.org/10.1038/nature11003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ghandi M, Huang FW, Jané-Valbuena J et al (2019) Next-generation characterization of the Cancer Cell Line Encyclopedia. Nature 569(7757):503–508. https://doi.org/10.1038/s41586-019-1186-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Tym JE, Mitsopoulos C, Coker EA, Razaz P, Schierz AC, Antolin AA, Al-Lazikani B (2016) canSAR: an updated cancer research and drug discovery knowledgebase. Nucleic Acids Res 44(D1):D938–D943. https://doi.org/10.1093/nar/gkv1030

    Article  CAS  PubMed  Google Scholar 

  21. Mitsopoulos C, Di Micco P, Fernandez EV et al (2020) canSAR: update to the cancer translational research and drug discovery knowledgebase. Nucleic Acids Res 47(D1):D917–D922. https://doi.org/10.1093/nar/gkaa1059

    Article  CAS  Google Scholar 

  22. Bamford S, Dawson E, Forbes S, Clements J, Pettett R, Dogan A et al (2004) The COSMIC (catalogue of somatic mutations in cancer) database and website. Br J Cancer 91(2):355–358. https://doi.org/10.1038/sj.bjc.6601894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tate JG, Bamford S, Jubb HC et al (2018) COSMIC: the catalogue of somatic mutations in cancer. Nucleic Acids Res 47:D941–D947. https://doi.org/10.1093/nar/gky1015

    Article  CAS  PubMed Central  Google Scholar 

  24. Ran FA, Hsu PD, Wright J et al (2013) Genome engineering using the CRISPR-Cas9 system. Nat Protoc 8:2281–2308. https://doi.org/10.1038/nprot.2013.143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Karimova M et al (2015) CRISPR/Cas9 nickase-mediated disruption of hepatitis B virus open reading frame S and X. Sci Rep. Nature Publishing Group 5:13734. https://doi.org/10.1038/srep13734

    Article  Google Scholar 

  26. Untergasser A, Cutcutache I, Koressaar T et al (2012) Primer3--new capabilities and interfaces. Nucleic Acids Res 40:e115

    Article  CAS  Google Scholar 

  27. Slaymaker IM, Gao L, Zetsche B, Scott DA, Yan WX, Zhang F (2016) Rationally engineered Cas9 nucleases with improved specificity. Science 351(6268):84–88. https://doi.org/10.1126/science.aad5227

    Article  CAS  PubMed  Google Scholar 

  28. Chen JS, Dagdas YS, Kleinstiver BP et al (2017) Enhanced proofreading governs CRISPR–Cas9 targeting accuracy. Nat Publ Group 550:407–410. https://doi.org/10.1038/nature24268

    Article  CAS  Google Scholar 

  29. Marco-Sola S, Sammeth M, Guigó R, Ribeca P (2012) The GEM mapper: fast, accurate and versatile alignment by filtration. Nat Methods 9:1185–1188. https://doi.org/10.1038/nmeth.2221

    Article  CAS  PubMed  Google Scholar 

  30. Evers B, Jastrzebski K, Heijmans JPM et al (2016) CRISPR knockout screening outperforms shRNA and CRISPRi in identifying essential genes. Nat Biotechnol 34:631–633. https://doi.org/10.1038/nbt.3536

    Article  CAS  PubMed  Google Scholar 

  31. Ben Jehuda R, Shemer Y, Binah O (2018) Genome editing in induced pluripotent stem cells using CRISPR/Cas9. Stem Cell Rev Rep 14(3):323–336. https://doi.org/10.1007/s12015-018-9811-3

    Article  CAS  PubMed  Google Scholar 

  32. Rouhani F, Kumasaka N, de Brito MC, Bradley A, Vallier L, Gaffney D (2014) Genetic background drives transcriptional variation in human induced pluripotent stem cells. PLoS Genet 10(6):e1004432. https://doi.org/10.1371/journal.pgen.1004432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Jin S, Zong Y, Gao Q et al (2019) Cytosine, but not adenine, base editors induce genome-wide off-target mutations in rice. Science 36:eaaw7166–eaaw7167. https://doi.org/10.1126/science.aaw7166

    Article  CAS  Google Scholar 

  34. McGrath E, Shin H, Zhang L et al (2019) Targeting specificity of APOBEC-based cytosine base editor in human iPSCs determined by whole genome sequencing. Nat Commun 10:1–9. https://doi.org/10.1038/s41467-019-13342-8

    Article  Google Scholar 

  35. Tan J, Zhang F, Karcher D, Bock R (2019) Engineering of high-precision base editors for site-specific single nucleotide replacement. Nat Commun 10:1–10. https://doi.org/10.1038/s41467-018-08034-8

    Article  CAS  Google Scholar 

  36. Zuo E, Sun Y, Wei W et al (2019) Cytosine base editor generates substantial off-target single-nucleotide variants in mouse embryos. Science 148:eaav9973–eaav9977. https://doi.org/10.1126/science.aav9973

    Article  CAS  Google Scholar 

  37. Rees HA, Komor AC, Yeh W-H et al (2017) Improving the DNA specificity and applicability of base editing through protein engineering and protein delivery. Nat Commun 8:1–10. https://doi.org/10.1038/ncomms15790

    Article  CAS  Google Scholar 

  38. Kluesner MG, Nedveck DA, Lahr WS et al (2018) EditR: a method to quantify base editing from sanger sequencing. CRISPR J 1:239–250. https://doi.org/10.1089/crispr.2018.0014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kuscu C, Arslan S, Singh R et al (2014) Genome-wide analysis reveals characteristics of off-target sites bound by the Cas9 endonuclease. Nat Biotechnol 32(7):677–683. https://doi.org/10.1038/nbt.2916

    Article  CAS  PubMed  Google Scholar 

  40. Zheng T, Hou Y, Zhang P et al (2017) Profiling single-guide RNA specificity reveals a mismatch sensitive core sequence. Sci Rep 7:1–8. https://doi.org/10.1038/srep40638

    Article  CAS  Google Scholar 

  41. Anderson EM, Haupt A, Schiel JA et al (2015) Systematic analysis of CRISPR–Cas9 mismatch tolerance reveals low levels of off-target activity. J Biotechnol 211:56–65. https://doi.org/10.1016/j.jbiotec.2015.06.427

    Article  CAS  PubMed  Google Scholar 

  42. Wang X, Huang X, Fang X et al (2016) CRISPR-Cas9 system as a versatile tool for genome engineering in human cells. Mol Ther Nucleic Acid 5:1–9. https://doi.org/10.1038/mtna.2016.95

    Article  CAS  Google Scholar 

  43. Wang T, Wei JJ, Sabatini DM, Lander ES (2014) Genetic screens in human cells using the CRISPR-Cas9 system. Science 343:80–84. https://doi.org/10.1126/science.1246981

    Article  CAS  PubMed  Google Scholar 

  44. Kleinstiver BP, Pattanayak V, Prew MS et al (2016) High-fidelity CRISPR–Cas9 nucleases with no detectable genome-wide off-target effects. Nature 529(7587):490–495. https://doi.org/10.1038/nature16526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Acharya S, Mishra A, Paul D et al (2019) Francisella novicida Cas9 interrogates genomic DNA with very high specificity and can be used for mammalian genome editing. Proc Natl Acad Sci U S A 116:20959

    Article  CAS  Google Scholar 

  46. Sayed S, Paszkowski-Rogacz M, Schmitt LT, Buchholz F (2019) CRISPR/Cas9 as a tool to dissect cancer mutations. Methods 164–165:36–48. https://doi.org/10.1016/j.ymeth.2019.05.007

    Article  CAS  PubMed  Google Scholar 

  47. Wilkins BJ, Rall NA, Ostwal Y et al (2014) A cascade of histone modifications induces chromatin condensation in mitosis. Science 343:77–80. https://doi.org/10.1126/science.1244508

    Article  CAS  PubMed  Google Scholar 

  48. Hwang G-H, Park J, Lim K et al (2018) Web-based design and analysis tools for CRISPR base editing. BMC Bioinformatics 19:1–7. https://doi.org/10.1186/s12859-018-2585-4

    Article  CAS  Google Scholar 

  49. Arbab M, Shen MW, Mok B et al (2020) Determinants of base editing outcomes from target library analysis and machine learning. Cell 182(2):463–480.e30. https://doi.org/10.1016/j.cell.2020.05.037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Anzalone AV, Koblan LW, Liu DR (2020) Genome editing with CRISPR–Cas nucleases, base editors, transposases and prime editors. Nat Biotechnol 38(7):824–844. https://doi.org/10.1038/s41587-020-0561-9

    Article  CAS  PubMed  Google Scholar 

  51. Richter MF, Zhao KT, Eton E et al (2020) Phage-assisted evolution of an adenine base editor with improved Cas domain compatibility and activity. Nat Biotechnol 38(7):883–891. https://doi.org/10.1038/s41587-020-0453-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Webber BR, Lonetree C-L, Kluesner MG et al (2019) Highly efficient multiplex human T cell engineering without double-strand breaks using Cas9 base editors. Nat Commun 10:1–10. https://doi.org/10.1038/s41467-019-13007-6

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Martina Augsburg for the excellent technical assistance. Figures were created using www.BioRender.com.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Buchholz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Sayed, S., Sürün, D., Mircetic, J., Sidorova, O., Buchholz, F. (2022). Using CRISPR-Cas9 to Dissect Cancer Mutations in Cell Lines. In: Christian, S.L. (eds) Cancer Cell Biology. Methods in Molecular Biology, vol 2508. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2376-3_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2376-3_18

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2375-6

  • Online ISBN: 978-1-0716-2376-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics