Skip to main content

Guidance for Designing a Preclinical Bioavailability Study of Bioactive Compounds

  • Chapter
  • First Online:
  • 740 Accesses

Part of the book series: Methods and Protocols in Food Science ((MPFS))

Abstract

The bioavailability of a bioactive compound is a fraction that reaches the systemic circulation and becomes available for its biological fate. This is significant since it provides new insights to understand the possible mechanisms of action. This guide shows some relevant aspects to consider when designing preclinical studies that assess the bioavailability of bioactive compounds in rodents. In this chapter, the following topics will be addressed: choice of animal model, sample size, route of administration of the compound of interest, fasting, blood collection tubes, sample collection, and description of the animal experiment for obtaining blood samples from rodents at six different times.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Kris-Etherton PM et al (2002) Bioactive compounds in foods: their role in the prevention of cardiovascular disease and cancer. Am J Med 113(Suppl 9B):71S–88S

    Article  CAS  PubMed  Google Scholar 

  2. Kitts DD (1994) Bioactive substances in food: identification and potential uses. Can J Physiol Pharmacol 72(4):423–434

    Article  CAS  PubMed  Google Scholar 

  3. Subramaniam S, Selvaduray KR, Radhakrishnan AK (2019) Bioactive compounds: natural defense against cancer? Biomol Ther 9(12)

    Google Scholar 

  4. Casas R et al (2018) Nutrition and cardiovascular health. Int J Mol Sci 19(12):3988

    Article  PubMed Central  Google Scholar 

  5. Skrovankova S et al (2015) Bioactive compounds and antioxidant activity in different types of berries. Int J Mol Sci 16(10):24673–24706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Karakaya S (2004) Bioavailability of phenolic compounds. Crit Rev Food Sci Nutr 44(6):453–464

    Article  CAS  PubMed  Google Scholar 

  7. Souza JE, Casanova LM, Costa SS (2015) Bioavailability of phenolic compounds: a major challenge for drug development? Revista Fitos 9(1):1–72

    Google Scholar 

  8. D'Archivio M et al (2010) Bioavailability of the polyphenols: status and controversies. Int J Mol Sci 11(4):1321–1342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Porrini M, Riso P (2008) Factors influencing the bioavailability of antioxidants in foods: a critical appraisal. Nutr Metab Cardiovasc Dis 18(10):647–650

    Article  PubMed  Google Scholar 

  10. Dima C et al (2020) Bioavailability and bioaccessibility of food bioactive compounds; overview and assessment by in vitro methods. Compr Rev Food Sci Food Saf 19(6):2862–2884

    Article  PubMed  Google Scholar 

  11. Neilson AP, Goodrich KM, Ferruzzi MG (2017) Chapter 15 – Bioavailability and metabolism of bioactive compounds from foods. In: Coulston AM et al (eds) Nutrition in the prevention and treatment of disease, 4th edn. San Diego California, USA, Academic Press, pp 301–319

    Google Scholar 

  12. Angelino D et al (2017) Bioaccessibility and bioavailability of phenolic compounds in bread: a review. Food Funct 8(7):2368–2393

    Article  CAS  PubMed  Google Scholar 

  13. Barba FJ et al (2017) Bioaccessibility of bioactive compounds from fruits and vegetables after thermal and nonthermal processing. Trends Food Sci Technol 67:195–206

    Article  CAS  Google Scholar 

  14. Sprott RL (1999) How to choose an animal model. In: Sternberg H, Timiras PS (eds) Studies of aging. Springer, Berlin, Heidelberg, pp 105–110

    Chapter  Google Scholar 

  15. Andersen ML et al (2016) Care and maintenance of laboratory animals. In: Andersen M, Tufik S (eds) Rodent model as tools in ethical biomedical research. Springer, Cham, pp 23–37

    Chapter  Google Scholar 

  16. Gibbs RA et al (2004) Genome sequence of the Brown Norway rat yields insights into mammalian evolution. Nature 428(6982):493–521

    Article  CAS  PubMed  Google Scholar 

  17. Chinwalla AT et al (2002) Initial sequencing and comparative analysis of the mouse genome. Nature 420(6915):520–562

    Article  CAS  PubMed  Google Scholar 

  18. Dutta S, Sengupta P (2016) Men and mice: relating their ages. Life Sci 152:244–248

    Article  CAS  PubMed  Google Scholar 

  19. Serdar CC et al (2021) Sample size, power and effect size revisited: simplified and practical approaches in pre-clinical, clinical and laboratory studies. Biochem Med (Zagreb) 31(1):010502

    Article  Google Scholar 

  20. National Research Council (2011) Guide for the care and use of laboratory animals. 2011 [cited 2021 December 21st, 2021]; Eighth Ed.:Available from: https://www.ncbi.nlm.nih.gov/books/NBK54050/

  21. Russell WMS, Burch RL (1959) The principles of humane experimental technique. Methuen, London

    Google Scholar 

  22. Charan J, Kantharia ND (2013) How to calculate sample size in animal studies? J Pharmacol Pharmacother 4(4):303–306

    Article  PubMed  PubMed Central  Google Scholar 

  23. Arifin WN, Zahiruddin WM (2017) Sample size calculation in animal studies using resource equation approach. Malaysian J Med Sci 24(5):101–105

    Article  Google Scholar 

  24. Singhvi SM et al (1981) Absorption and bioavailability of captopril in mice and rats after administration by gavage and in the diet. J Pharm Sci 70(8):885–888

    Article  CAS  PubMed  Google Scholar 

  25. Jensen TL et al (2013) Fasting of mice: a review. Lab Anim 47(4):225–240

    Article  CAS  PubMed  Google Scholar 

  26. Kutscher CL (1971) Incidence of food-deprivation polydipsia in the white Swiss mouse. Physiol Behav 7(3):395–399

    Article  CAS  PubMed  Google Scholar 

  27. Kinouchi K et al (2018) Fasting imparts a switch to alternative daily pathways in liver and muscle. Cell Rep 25(12):3299–3314.e6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Prior H et al (2012) Refinement of the charcoal meal study by reduction of the fasting period. Altern Lab Anim 40(2):99–107

    Article  CAS  PubMed  Google Scholar 

  29. Kale VP et al (2009) Effect of fasting duration on clinical pathology results in Wistar rats. Vet Clin Pathol 38(3):361–366

    Article  PubMed  Google Scholar 

  30. Psychogios N et al (2011) The human serum metabolome. PLoS One 6(2):e16957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lundblad R (2003) Considerations for the use of blood plasma and serum for proteomic analysis. Internet J Gen Prot 1(2). Available in: https://print.ispub.com/api/0/ispub-article/3649

  32. Niu Z et al (2018) Recent advances in biological sample preparation methods coupled with chromatography, spectrometry and electrochemistry analysis techniques. TrAC Trends Anal Chem 102:123–146

    Article  CAS  Google Scholar 

  33. Khadka M et al (2019) The effect of anticoagulants, temperature, and time on the human plasma metabolome and lipidome from healthy donors as determined by liquid chromatography-mass spectrometry. Biomol Ther 9(5):200

    Google Scholar 

  34. Kennedy AD et al (2021) Global biochemical analysis of plasma, serum and whole blood collected using various anticoagulant additives. PLoS One 16(4):e0249797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Paglia G et al (2018) Influence of collection tubes during quantitative targeted metabolomics studies in human blood samples. Clin Chim Acta 486:320–328

    Article  CAS  PubMed  Google Scholar 

  36. Simundic AM et al (2020) Managing hemolyzed samples in clinical laboratories. Crit Rev Clin Lab Sci 57(1):1–21

    Article  CAS  PubMed  Google Scholar 

  37. Marques-Garcia F (2020) Methods for hemolysis interference study in laboratory medicine - a critical review. EJIFCC 31(1):85–97

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Koseoglu M et al (2011) Effects of hemolysis interferences on routine biochemistry parameters. Biochem Med (Zagreb) 21(1):79–85

    Article  CAS  Google Scholar 

  39. Lippi G et al (2019) Blood sample quality. Diagnosis (Berl) 6(1):25–31

    Article  Google Scholar 

  40. López-Yerena A et al (2021) Metabolomics technologies for the identification and quantification of dietary phenolic compound metabolites: an overview. Antioxidants (Basel) 10(6):846

    Google Scholar 

  41. López-Yerena A et al (2020) Insights into the binding of dietary phenolic compounds to human serum albumin and food-drug interactions. Pharmaceutics 12(11):1123

    Google Scholar 

  42. Kohler I, Schappler J, Rudaz S (2013) Microextraction techniques combined with capillary electrophoresis in bioanalysis. Anal Bioanal Chem 405(1):125–141

    Article  CAS  PubMed  Google Scholar 

  43. Emwas AH (2015) The strengths and weaknesses of NMR spectroscopy and mass spectrometry with particular focus on metabolomics research. Methods Mol Biol 1277:161–193

    Article  CAS  PubMed  Google Scholar 

  44. Bouatra S et al (2013) The human urine metabolome. PLoS One 8(9):e73076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Theodoridis GA et al (2012) Liquid chromatography-mass spectrometry based global metabolite profiling: a review. Anal Chim Acta 711:7–16

    Article  CAS  PubMed  Google Scholar 

  46. Madsen R, Lundstedt T, Trygg J (2010) Chemometrics in metabolomics—a review in human disease diagnosis. Anal Chim Acta 659(1):23–33

    Article  CAS  PubMed  Google Scholar 

  47. Haggarty J, Burgess KEV (2017) Recent advances in liquid and gas chromatography methodology for extending coverage of the metabolome. Curr Opin Biotechnol 43:77–85

    Article  CAS  PubMed  Google Scholar 

  48. Dettmer K, Aronov PA, Hammock BD (2007) Mass spectrometry-based metabolomics. Mass Spectrom Rev 26(1):51–78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors thank Espaço da Escrita – Pró-Reitoria de Pesquisa – UNICAMP – for the language services provided.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Roberto Maróstica Junior .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

de Freitas Queiroz Barros, H.D., Baú Betim Cazarin, C., Maróstica Junior, M.R. (2022). Guidance for Designing a Preclinical Bioavailability Study of Bioactive Compounds. In: Betim Cazarin, C.B. (eds) Basic Protocols in Foods and Nutrition. Methods and Protocols in Food Science . Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2345-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2345-9_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2344-2

  • Online ISBN: 978-1-0716-2345-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics