Skip to main content

Using Single Molecule RNA FISH to Determine Nuclear Export and Transcription Phenotypes in Drosophila Tissues

  • Protocol
  • First Online:
The Nuclear Pore Complex

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2502))

Abstract

Single molecule RNA fluorescence in situ hybridization (smRNA FISH) is a widely used method for examining cellular localization of RNA and assessing gene expression outputs. The Nuclear Pore Complex (NPC) is a nuclear macro-complex known to both mediate nucleocytoplasmic transport and influence transcription via interactions with chromatin. Consequently, depletion of NPC proteins can result in defects in either transcription or nuclear export of mRNA. To distinguish between these two different functions of NPC components, it is preferable to analyze transcription and mRNA export simultaneously or in the same cell. Here, we present a smRNA FISH protocol with downstream custom MATLAB image analysis for application in Drosophila larval salivary gland tissues. This method can detect both nuclear export and transcriptional phenotypes in the same cell and as a single assay, and can be adapted to many other cell types and organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kuhn TM, Capelson M (2019) Nuclear pore proteins in regulation of chromatin state. Cell 8:1414

    Article  CAS  Google Scholar 

  2. Raices M, D'Angelo MA (2017) Nuclear pore complexes and regulation of gene expression. Curr Opin Cell Biol 46:26–32

    Article  CAS  Google Scholar 

  3. Ibarra A, Hetzer MW (2015) Nuclear pore proteins and the control of genome functions. Genes Dev 29:337–349

    Article  CAS  Google Scholar 

  4. Pascual-Garcia P, Debo B, Aleman JR, Talamas JA, Lan Y, Nguyen NH, Won KJ, Capelson M (2017) Metazoan nuclear pores provide a scaffold for poised genes and mediate induced enhancer-promoter contacts. Mol Cell 66(63–76):e66

    Google Scholar 

  5. Ibarra A, Benner C, Tyagi S, Cool J, Hetzer MW (2016) Nucleoporin-mediated regulation of cell identity genes. Genes Dev 30:2253–2258

    Article  CAS  Google Scholar 

  6. Pascual-Garcia P, Jeong J, Capelson M (2014) Nucleoporin Nup98 associates with Trx/MLL and NSL histone-modifying complexes and regulates Hox gene expression. Cell Rep 9:433–442

    Article  CAS  Google Scholar 

  7. Light WH, Freaney J, Sood V, Thompson A, D'Urso A, Horvath CM, Brickner JH (2013) A conserved role for human Nup98 in altering chromatin structure and promoting epigenetic transcriptional memory. PLoS Biol 11:e1001524

    Article  CAS  Google Scholar 

  8. Liang Y, Franks TM, Marchetto MC, Gage FH, Hetzer MW (2013) Dynamic association of NUP98 with the human genome. PLoS Genet 9:e1003308

    Article  CAS  Google Scholar 

  9. Light WH, Brickner DG, Brand VR, Brickner JH (2010) Interaction of a DNA zip code with the nuclear pore complex promotes H2A.Z incorporation and INO1 transcriptional memory. Mol Cell 40:112–125

    Article  CAS  Google Scholar 

  10. Kalverda B, Pickersgill H, Shloma VV, Fornerod M (2010) Nucleoporins directly stimulate expression of developmental and cell-cycle genes inside the nucleoplasm. Cell 140:360–371

    Article  CAS  Google Scholar 

  11. Capelson M, Liang Y, Schulte R, Mair W, Wagner U, Hetzer MW (2010) Chromatin-bound nuclear pore components regulate gene expression in higher eukaryotes. Cell 140:372–383

    Article  CAS  Google Scholar 

  12. Wente SR, Rout MP (2010) The nuclear pore complex and nuclear transport. Cold Spring Harb Perspect Biol 2:a000562

    Article  CAS  Google Scholar 

  13. Terry LJ, Wente SR (2007) Nuclear mRNA export requires specific FG nucleoporins for translocation through the nuclear pore complex. J Cell Biol 178:1121–1132

    Article  CAS  Google Scholar 

  14. Galy V, Gadal O, Fromont-Racine M, Romano A, Jacquier A, Nehrbass U (2004) Nuclear retention of unspliced mRNAs in yeast is mediated by perinuclear Mlp1. Cell 116:63–73

    Article  CAS  Google Scholar 

  15. Guglielmi A, Sakuma S, D'Angelo MA (2020) Nuclear pore complexes in development and tissue homeostasis. Development 147:dev183442

    Article  CAS  Google Scholar 

  16. Cho UH, Hetzer MW (2020) Nuclear periphery takes center stage: the role of nuclear pore complexes in cell identity and aging. Neuron 106:899–911

    Article  CAS  Google Scholar 

  17. Aksenova V, Smith A, Lee H, Bhat P, Esnault C, Chen S, Iben J, Kaufhold R, Yau KC, Echeverria C et al (2020) Nucleoporin TPR is an integral component of the TREX-2 mRNA export pathway. Nat Commun 11:4577

    Article  CAS  Google Scholar 

  18. Vinciguerra P, Iglesias N, Camblong J, Zenklusen D, Stutz F (2005) Perinuclear Mlp proteins downregulate gene expression in response to a defect in mRNA export. EMBO J 24:813–823

    Article  CAS  Google Scholar 

  19. Iovine MK, Watkins JL, Wente SR (1995) The GLFG repetitive region of the nucleoporin Nup116p interacts with Kap95p, an essential yeast nuclear import factor. J Cell Biol 131:1699–1713

    Article  CAS  Google Scholar 

  20. Hieronymus H, Yu MC, Silver PA (2004) Genome-wide mRNA surveillance is coupled to mRNA export. Genes Dev 18:2652–2662

    Article  CAS  Google Scholar 

  21. Aleman JR, Kuhn TM, Pascual-Garcia P, Gospocic J, Lan Y, Bonasio R, Little SC, Capelson M (2021) Correct dosage of X chromosome transcription is controlled by a nuclear pore component. Cell Rep 35(11):109236

    Article  CAS  Google Scholar 

  22. Little SC, Gregor T (2018) Single mRNA molecule detection in drosophila. Methods Mol Biol 1649:127–142

    Article  CAS  Google Scholar 

  23. Kennison JA (2008) Dissection of larval salivary glands and polytene chromosome preparation. CSH Protoc 2008:pdb.prot4708

    PubMed  Google Scholar 

  24. Little SC, Tikhonov M, Gregor T (2013) Precise developmental gene expression arises from globally stochastic transcriptional activity. Cell 154:789–800

    Article  CAS  Google Scholar 

  25. Little SC, Sinsimer KS, Lee JJ, Wieschaus EF, Gavis ER (2015) Independent and coordinate trafficking of single Drosophila germ plasm mRNAs. Nat Cell Biol 17:558–568

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maya Capelson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Aleman, J.R., Little, S.C., Capelson, M. (2022). Using Single Molecule RNA FISH to Determine Nuclear Export and Transcription Phenotypes in Drosophila Tissues. In: Goldberg, M.W. (eds) The Nuclear Pore Complex. Methods in Molecular Biology, vol 2502. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2337-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2337-4_8

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2336-7

  • Online ISBN: 978-1-0716-2337-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics