Skip to main content

Searching Metagenomes for New Rhodopsins

  • Protocol
  • First Online:
Rhodopsin

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2501))

Abstract

Most microbial groups have not been cultivated yet, and the only way to approach the enormous diversity of rhodopsins that they contain in a sensible timeframe is through the analysis of their genomes. High-throughput sequencing technologies have allowed the release of community genomics (metagenomics) of many habitats in the photic zones of the ocean and lakes. Already the harvest is impressive and included from the first bacterial rhodopsin (proteorhodopsin) to the recent discovery of heliorhodopsin by functional metagenomics. However, the search continues using bioinformatic or biochemical routes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Stanier RY, Doudoroff M, Adelberg EA (1971) General microbiology, 3rd edn. Prentice Hall

    Book  Google Scholar 

  2. Krisch HM, Comeau AM (2008) The immense journey of bacteriophage T4—from d’Herelle to Delbruck and then to Darwin and beyond. Res Microbiol 159(5):314–324

    Article  CAS  PubMed  Google Scholar 

  3. Magrum L et al (1975) Corrections in the catalogue of oliogonucleotides produced by digestion of Escherichia coli 16S rRNA with T1 RNase. Nature 257(5525):423–426

    Article  CAS  PubMed  Google Scholar 

  4. Woese CR, Fox GE (1977) Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc Natl Acad Sci U S A 74(11):5088–5090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Pace NR et al (1986) The analysis of natural microbial populations by ribosomal RNA sequences. Adv Microb Ecol 9:1–55

    Article  CAS  Google Scholar 

  6. Giovannoni SJ et al (1990) Genetic diversity in Sargasso Sea bacterioplankton. Nature 345(6270):60–63

    Article  CAS  PubMed  Google Scholar 

  7. Hugenholtz P, Goebel BM, Pace NR (1998) Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J Bacteriol 180(18):4765–4774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chisholm SW et al (1992) Prochlorococcus marinus nov. gen. nov. sp.: an oxyphototrophic marine prokaryote containing divinyl chlorophyll a and b. Arch Microbiol 157:297–300

    Article  CAS  Google Scholar 

  9. Rippka R et al (2000) Prochlorococcus marinus Chisholm et al. 1992 subsp. pastoris subsp. nov. strain PCC 9511, the first axenic chlorophyll a2/b2-containing cyanobacterium (Oxyphotobacteria). Int J Syst Evol Microbiol 5:1833–1847

    Article  Google Scholar 

  10. Rappé MS et al (2002) Cultivation of the ubiquitous SAR11 marine bacterioplankton clade. Nature 418(6898):630–633

    Article  PubMed  CAS  Google Scholar 

  11. Giovannoni SJ, Cameron Thrash J, Temperton B (2014) Implications of streamlining theory for microbial ecology. ISME J 8(8):1553–1565

    Article  PubMed  PubMed Central  Google Scholar 

  12. Welch RA et al (2002) Extensive mosaic structure revealed by the complete genome sequence of uropathogenic Escherichia coli. Proc Natl Acad Sci U S A 99(26):17020–17024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tettelin H et al (2005) Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: implications for the microbial "pan-genome". Proc Natl Acad Sci U S A 102(39):13950–13955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Land M et al (2015) Insights from 20 years of bacterial genome sequencing. Funct Integr Genomics 15(2):141–161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Suzuki MT et al (2004) Phylogenetic screening of ribosomal RNA gene-containing clones in Bacterial Artificial Chromosome (BAC) libraries from different depths in Monterey Bay. Microbial Ecol 48:473–488

    Article  CAS  Google Scholar 

  16. Venter JC et al (2004) Environmental genome shotgun sequencing of the Sargasso Sea. Science 304:66–74

    Article  CAS  PubMed  Google Scholar 

  17. Kunin V et al (2008) A bioinformatician’s guide to metagenomics. Microbiol Mol Biol Rev 72(4):557–578, Table of Contents

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Haro-Moreno JM et al (2020) Ecogenomics of the SAR11 clade. Environ Microbiol 22(5):1748–1763

    Article  CAS  PubMed  Google Scholar 

  19. Rodriguez-Valera F, Martin-Cuadrado AB, Lopez-Perez M (2016) Flexible genomic islands as drivers of genome evolution. Curr Opin Microbiol 31:154–160

    Article  CAS  PubMed  Google Scholar 

  20. Rondon MR et al (2000) Cloning the soil metagenome: a strategy for accessing the genetic and functional diversity of uncultured microorganisms. Appl Environ Microbiol 66(6):2541–2547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Béjà O et al (2000) Construction and analysis of bacterial artificial chromosome libraries from a marine microbial assemblage. Environ Microbiol 2(5):516–529

    Article  PubMed  Google Scholar 

  22. Oesterhelt D, Stoeckenius W (1971) Rhodopsin-like protein from the purple membrane of Halobacterium halobium. Nat New Biol 233(39):149–152

    Article  CAS  PubMed  Google Scholar 

  23. Matsuno-Yagi A, Mukohata Y (1977) Two possible roles of bacteriorhodopsin; a comparative study of strains of Halobacterium halobium differing in pigmentation. Biochem Biophys Res Commun 78(1):237–243

    Article  CAS  PubMed  Google Scholar 

  24. Spudich JL, Bogomolni RA (1984) Mechanism of colour discrimination by a bacterial sensory rhodopsin. Nature 312(5994):509–513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Jung KH, Trivedi VD, Spudich JL (2003) Demonstration of a sensory rhodopsin in eubacteria. Mol Microbiol 47(6):1513–1522

    Article  CAS  PubMed  Google Scholar 

  26. Finkel OM, Béjà O, Belkin S (2012) Global abundance of microbial rhodopsins. ISME J 7:448–451

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Gómez-Consarnau L et al (2019) Microbial rhodopsins are major contributors to the solar energy captured in the sea. Sci Adv 5:eaaw8855

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Fuhrman JA, Schwalbach MS, Stingl U (2008) Proteorhodopsins: an array of physiological roles? Nat Rev Microbiol 6:488–494

    Article  CAS  PubMed  Google Scholar 

  29. Yutin N, Koonin EV (2012) Proteorhodopsin genes in giant viruses. Biol Direct 7:34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Philosof A, Béjà O (2013) Bacterial, archaeal and viral-like rhodopsins from the Red Sea. Environ Microbiol Rep 5:475–482

    Article  CAS  PubMed  Google Scholar 

  31. Needham DM et al (2019) A distinct lineage of giant viruses brings a rhodopsin photosystem to unicellular marine predators. Proc Natl Acad Sci U S A 116(41):20574–20583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bratanov D et al (2019) Unique structure and function of viral rhodopsins. Nat Commun 10(1):4939

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Zabelskii D et al (2020) Viral rhodopsins 1 are an unique family of light-gated cation channels. Nat Commun 11:5707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Martínez A et al (2007) Proteorhodopsin photosystem gene expression enables photophosphorylation in heterologous host. Proc Natl Acad Sci U S A 104:5590–5595

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Sabehi G et al (2005) New insights into metabolic properties of marine bacteria encoding proteorhodopsins. PLoS Biol 3:e173

    Article  CAS  Google Scholar 

  36. Pushkarev A, Béjà O (2016) Functional metagenomic screen reveals new and diverse microbial rhodopsins. ISME J 10:2331–2335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Pushkarev A et al (2018) A distinct abundant group of microbial rhodopsins discovered using functional metagenomics. Nature 558:595–599

    Article  CAS  PubMed  Google Scholar 

  38. Altschul SF et al (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  39. Gish W, States DJ (1993) Identification of protein coding regions by database similarity search. Nat Genet 3:266–272

    Article  CAS  PubMed  Google Scholar 

  40. Buchfink B, Xie C, Huson DH (2015) Fast and sensitive protein alignment using DIAMOND. Nat Methods 12:59–60

    Article  CAS  PubMed  Google Scholar 

  41. Brenner SE, Chothia C, Hubbard TJP (1998) Assessing sequence comparison methods with reliable structurally identified distant evolutionary relationships. Proc Natl Acad Sci U S A 95:6073–6078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Park J et al (1998) Sequence comparisons using multiple sequences detect three times as many remote homologues as pairwise methods. J Mol Biol 284:1201–1210

    Article  CAS  PubMed  Google Scholar 

  43. Krogh A et al (1994) Hidden Markov Models in computational biology applications to protein modeling. J Mol Biol 235:1501–1531

    Article  CAS  PubMed  Google Scholar 

  44. Käll L, Krogh A, Sonnhammer EL (2004) A combined transmembrane topology and signal peptide prediction method. J Mol Biol 338(5):1027–1036

    Article  PubMed  CAS  Google Scholar 

  45. Sonnhammer EL, von Heijne G, Krogh A (1998) A hidden Markov model for predicting transmembrane helices in protein sequences. In: ISMB ’98: proceedings of the 6th international conference on intelligent systems for molecular biology. ACM, pp 175–182

    Google Scholar 

  46. Reynolds SM et al (2008) Transmembrane topology and signal peptide prediction using dynamic bayesian networks. PLoS Comput Biol 4:e1000213

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Oppermann J et al (2019) MerMAIDs: a novel family of metagenomically discovered, marine, anion-conducting and intensely desensitizing channelrhodopsins. Nat Commun 10:3315

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by Russian Science Foundation (RSF) Project 21-64-00018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oded Béjà .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Rodriguez-Valera, F., Pushkarev, A., Rosselli, R., Béjà, O. (2022). Searching Metagenomes for New Rhodopsins. In: Gordeliy, V. (eds) Rhodopsin. Methods in Molecular Biology, vol 2501. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2329-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2329-9_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2328-2

  • Online ISBN: 978-1-0716-2329-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics