Skip to main content

Maximizing Depth of PTM Coverage: Generating Robust MS Datasets for Computational Prediction Modeling

  • Protocol
  • First Online:
Computational Methods for Predicting Post-Translational Modification Sites

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2499))

Abstract

Post-translational modifications (PTMs) regulate complex biological processes through the modulation of protein activity, stability, and localization. Insights into the specific modification type and localization within a protein sequence can help ascertain functional significance. Computational models are increasingly demonstrated to offer a low-cost, high-throughput method for comprehensive PTM predictions. Algorithms are optimized using existing experimental PTM data, thus accurate prediction performance relies on the creation of robust datasets. Herein, advancements in mass spectrometry–based proteomics technologies to maximize PTM coverage are reviewed. Further, requisite experimental validation approaches for PTM predictions are explored to ensure that follow-up mechanistic studies are focused on accurate modification sites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Qi HH, Ongusaha PP, Myllyharju J et al (2008) Prolyl 4-hydroxylation regulates argonaute 2 stability. Nature 455(7211):421–424. https://doi.org/10.1038/nature07186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sahar S, Zocchi L, Kinoshita C et al (2010) Regulation of BMAL1 protein stability and circadian function by GSK3β-mediated phosphorylation. PLoS One 5(1):e8561. https://doi.org/10.1371/journal.pone.0008561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Deribe YL, Pawson T, Dikic I (2010) Post-translational modifications in signal integration. Nat Struct Mol Biol 17(6):666–672. https://doi.org/10.1038/nsmb.1842

    Article  CAS  PubMed  Google Scholar 

  4. Liu J, Qian C, Cao X (2016) Post-translational modification control of innate immunity. Immunity 45(1):15–30. https://doi.org/10.1016/j.immuni.2016.06.020

    Article  CAS  PubMed  Google Scholar 

  5. Ahearn IM, Haigis K, Bar-Sagi D et al (2012) Regulating the regulator: post-translational modification of RAS. Nat Rev Mol Cell Biol 13(1):39–51. https://doi.org/10.1038/nrm3255

    Article  CAS  Google Scholar 

  6. Xie Y, Kang R, Sun X et al (2015) Posttranslational modification of autophagy-related proteins in macroautophagy. Autophagy 11(1):28–45. https://doi.org/10.4161/15548627.2014.984267

    Article  CAS  PubMed  Google Scholar 

  7. Smith LM, Kelleher NL (2018) Proteoforms as the next proteomics currency: identifying precise molecular forms of proteins can improve our understanding of function. Science 359(6380):1106–1107. https://doi.org/10.1126/science.aat1884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Khoury GA, Baliban RC, Floudas CA (2011) Proteome-wide post-translational modification statistics: frequency analysis and curation of the swiss-prot database. Sci Rep 1(1):1–5. https://doi.org/10.1038/srep00090

    Article  CAS  Google Scholar 

  9. Audagnotto M, Dal Peraro M (2017) Protein post-translational modifications: in silico prediction tools and molecular modeling. Comput Struct Biotechnol J 15:307–319. https://doi.org/10.1016/j.csbj.2017.03.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Choudhary C, Mann M (2010) Decoding signalling networks by mass spectrometry-based proteomics. Nat Rev Mol Cell Biol 11(6):427–439. https://doi.org/10.1038/nrm2900

    Article  CAS  PubMed  Google Scholar 

  11. Olsen JV, Mann M (2013) Status of large-scale analysis of posttranslational modifications by mass spectrometry. Mol Cell Proteomics 12(12):3444–3452. https://doi.org/10.1074/mcp.O113.034181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhang Y, Zhang C, Jiang H et al (2015) Fishing the PTM proteome with chemical approaches using functional solid phases. Chem Soc Rev 44(22):8260–8287. https://doi.org/10.1039/c4cs00529e

    Article  CAS  PubMed  Google Scholar 

  13. Zhang Y, Fonslow BR, Shan B et al (2013) Protein analysis by shotgun/bottom-up proteomics. Chem Rev 113(4):2343–2394. https://doi.org/10.1021/cr3003533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gillet LC, Leitner A, Aebersold R (2016) Mass spectrometry applied to bottom-up proteomics: entering the high-throughput era for hypothesis testing. Annu Rev Anal Chem 9(1):449–472. https://doi.org/10.1146/annurev-anchem-071015-041535

    Article  Google Scholar 

  15. Stahl DC, Swiderek KM, Davis MT et al (1996) Data-controlled automation of liquid chromatography/tandem mass spectrometry analysis of peptide mixtures. J Am Soc Mass Spectrom 7(6):532–540. https://doi.org/10.1016/1044-0305(96)00057-8

    Article  CAS  PubMed  Google Scholar 

  16. Singh C, Zampronio CG, Creese AJ et al (2012) Higher energy collision dissociation (HCD) product ion-triggered electron transfer dissociation (ETD) mass spectrometry for the analysis of N-linked glycoproteins. J Proteome Res 11(9):4517–4525. https://doi.org/10.1021/pr300257c

    Article  CAS  PubMed  Google Scholar 

  17. Frese CK, Altelaar AFM, Hennrich ML et al (2011) Improved peptide identification by targeted fragmentation using CID, HCD and ETD on an LTQ-orbitrap velos. J Proteome Res 10(5):2377–2388. https://doi.org/10.1021/pr1011729

    Article  CAS  PubMed  Google Scholar 

  18. Perkins DN, Pappin DJC, Creasy DM et al (1999) Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20(18):3551–3567. 10.1002/(SICI)1522-2683(19991201)20:18<3551::AID-ELPS3551>3.0.CO;2-2

    Article  CAS  Google Scholar 

  19. Tabb DL, Eng JK, Yates JR (2001) Protein identification by SEQUEST. Springer, Berlin, pp 125–142

    Google Scholar 

  20. Cox J, Neuhauser N, Michalski A et al (2011) Andromeda: a peptide search engine integrated into the MaxQuant environment. J Proteome Res 10(4):1794–1805. https://doi.org/10.1021/pr101065j

    Article  CAS  PubMed  Google Scholar 

  21. Nesvizhskii AI (2010) A survey of computational methods and error rate estimation procedures for peptide and protein identification in shotgun proteomics. J Proteomics 73(11):2092–2123. https://doi.org/10.1016/j.jprot.2010.08.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chalkley RJ, Clauser KR (2012) Modification site localization scoring: strategies and performance. Mol Cell Proteomics 11(5):3–14. https://doi.org/10.1074/mcp.R111.015305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Needham EJ, Parker BL, Burykin T et al (2019) Illuminating the dark phosphoproteome. Sci Signal 12(565):8645. https://doi.org/10.1126/scisignal.aau8645

    Article  CAS  Google Scholar 

  24. Xiao H, Chen W, Smeekens JM et al (2018) An enrichment method based on synergistic and reversible covalent interactions for large-scale analysis of glycoproteins. Nat Commun 9(1):1–12. https://doi.org/10.1038/s41467-018-04081-3

    Article  CAS  Google Scholar 

  25. Dang L, Jia L, Zhi Y et al (2019) Mapping human N-linked glycoproteins and glycosylation sites using mass spectrometry. Trends Anal Chem 114:143–150. https://doi.org/10.1016/j.trac.2019.02.009

    Article  CAS  Google Scholar 

  26. Al-Barakati HJ, EW MC, Hicks LM et al (2018) SVM-SulfoSite: a support vector machine based predictor for sulfenylation sites. Sci Rep 8(1):1–9. https://doi.org/10.1038/s41598-018-29,126-x

    Article  CAS  Google Scholar 

  27. Gnad F, Ren S, Cox J et al (2007) PHOSIDA (phosphorylation site database): management, structural and evolutionary investigation, and prediction of phosphosites. Genome Biol 8(11):R250. https://doi.org/10.1186/gb-2007-8-11-r250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wang D, Liang Y, Xu D (2019) Capsule network for protein post-translational modification site prediction. Bioinformatics 35(14):2386–2394. https://doi.org/10.1093/bioinformatics/bty977

    Article  CAS  PubMed  Google Scholar 

  29. Hasan MM (2017) Prediction of protein post-translational modification sites: an overview. Ann Proteomics Bioinforma 2(1):49–57. https://doi.org/10.29328/journal.apb.1001005

    Article  Google Scholar 

  30. Zhang N, Li BQ, Gao S et al (2012) Computational prediction and analysis of protein γ-carboxylation sites based on a random forest method. Mol Biosyst 8(11):2946–2955. https://doi.org/10.1039/c2mb25185j

    Article  CAS  PubMed  Google Scholar 

  31. Wang J-R, Huang W-L, Tsai M-J et al (2017) ESA-UbiSite: accurate prediction of human ubiquitination sites by identifying a set of effective negatives. Bioinformatics 33(5):btw701. https://doi.org/10.1093/bioinformatics/btw701

    Article  CAS  Google Scholar 

  32. Chen QY, Tang J, Du PF (2017) Predicting protein lysine phosphoglycerylation sites by hybridizing many sequence based features. Mol Biosyst 13(5):874–882. https://doi.org/10.1039/c6mb00875e

    Article  CAS  PubMed  Google Scholar 

  33. Wysocki VH, Resing KA, Zhang Q et al (2005) Mass spectrometry of peptides and proteins. Methods 35(3):211–222. https://doi.org/10.1016/j.ymeth.2004.08.013

    Article  CAS  PubMed  Google Scholar 

  34. Issaq HJ, Conrads TP, Janini GM et al (2002) Methods for fractionation, separation and profiling of proteins and peptides. Electrophoresis 23(17):3048–3061. https://doi.org/10.1002/1522-2683(200209)23:17 < 3048::AID-ELPS3048 > 3.0.CO;2-L

    Article  CAS  PubMed  Google Scholar 

  35. Canbay V, auf dem Keller U (2021) New strategies to identify protease substrates. Curr Opin Chem Biol 60:89–96. https://doi.org/10.1016/j.cbpa.2020.09.009

    Article  CAS  PubMed  Google Scholar 

  36. Iannetta AA, Rogers HT, Al-Mohanna T et al (2021) Profiling thimet oligopeptidase-mediated proteolysis in Arabidopsis thaliana. Plant J 106(2):336–350. https://doi.org/10.1111/tpj.15165

    Article  CAS  PubMed  Google Scholar 

  37. Olsen JV, Ong SE, Mann M (2004) Trypsin cleaves exclusively C-terminal to arginine and lysine residues. Mol Cell Proteomics 3(6):608–614. https://doi.org/10.1074/mcp.T400003-MCP200

    Article  CAS  PubMed  Google Scholar 

  38. Lodish H, Berk A, Zipursky SL et al (2000) Hierarchical structure of proteins. In: Molecular cell biology. W. H. Freeman, New York

    Google Scholar 

  39. Keil-Dlouhá V, Zylber N, Imhoff JM et al (1971) Proteolytic activity of pseudotrypsin. FEBS Lett 16(4):291–295. https://doi.org/10.1016/0014-5793(71)80373-3

    Article  PubMed  Google Scholar 

  40. Rice RH, Means GE, Brown WD (1977) Stabilization of bovine trypsin by reductive methylation. BBA Protein Struct 492(2):316–321. https://doi.org/10.1016/0005-2795(77)90082-4

    Article  CAS  Google Scholar 

  41. Ma J, Liang Z, Qiao X et al (2008) Organic-inorganic hybrid silica monolith based immobilized trypsin reactor with high enzymatic activity. Anal Chem 80(8):2949–2956. https://doi.org/10.1021/ac702343a

    Article  CAS  PubMed  Google Scholar 

  42. Sun L, Zhu G, Yan X et al (2014) Uncovering immobilized trypsin digestion features from large-scale proteome data generated by high-resolution mass spectrometry. J Chromatogr A 1337:40–47. https://doi.org/10.1016/j.chroma.2014.02.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Tran BQ, Hernandez C, Waridel P et al (2011) Addressing trypsin bias in large scale (pPhospho)proteome analysis by size exclusion chromatography and secondary digestion of large post-trypsin peptides. J Proteome Res 10(2):800–811. https://doi.org/10.1021/pr100951t

    Article  CAS  PubMed  Google Scholar 

  44. Imre T, Schlosser G, Pocsfalvi G et al (2005) Glycosylation site analysis of human alpha-1-acid glycoprotein (AGP) by capillary liquid chromatography—electrospray mass spectrometry. J Mass Spectrom 40(11):1472–1483. https://doi.org/10.1002/jms.938

    Article  CAS  PubMed  Google Scholar 

  45. Guo X, Trudgian DC, Lemoff A et al (2014) Confetti: a multiprotease map of the HeLa proteome for comprehensive proteomics. Mol Cell Proteomics 13(6):1573–1584. https://doi.org/10.1074/mcp.M113.035170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Swaney DL, Wenger CD, Coon JJ (2010) Value of using multiple proteases for large-scale mass spectrometry-based proteomics. J Proteome Res 9(3):1323–1329. https://doi.org/10.1021/pr900863u

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wiśniewski JR, Mann M (2012) Consecutive proteolytic digestion in an enzyme reactor increases depth of proteomic and phosphoproteomic analysis. Anal Chem 84(6):2631–2637. https://doi.org/10.1021/ac300006b

    Article  CAS  PubMed  Google Scholar 

  48. Bian Y, Ye M, Song C et al (2012) Improve the coverage for the analysis of phosphoproteome of HeLa cells by a tandem digestion approach. J Proteome Res 11(5):2828–2837. https://doi.org/10.1021/pr300242w

    Article  CAS  PubMed  Google Scholar 

  49. Zhao Y, Jensen ON (2009) Modification-specific proteomics: strategies for characterization of post-translational modifications using enrichment techniques. Proteomics 9(20):4632–4641. https://doi.org/10.1002/pmic.200900398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Huang J, Wang F, Ye M et al (2014) Enrichment and separation techniques for large-scale proteomics analysis of the protein post-translational modifications. J Chromatogr A 1372:1–17. https://doi.org/10.1016/j.chroma.2014.10.107

    Article  CAS  Google Scholar 

  51. Xu H, Wang Y, Lin S et al (2018) PTMD: a database of human disease-associated post-translational modifications. Genomics Proteomics Bioinformatics 16(4):244–251. https://doi.org/10.1016/j.gpb.2018.06.004

    Article  PubMed  PubMed Central  Google Scholar 

  52. Ward PS, Thompson CB (2012) Signaling in control of cell growth and metabolism. Cold Spring Harb Perspect Biol 4(7):1–15. https://doi.org/10.1101/cshperspect.a006783

    Article  CAS  Google Scholar 

  53. Dhanasekaran DN, Premkumar Reddy E (2017) JNK-signaling: a multiplexing hub in programmed cell death. Genes Cancer 8(9–10):682–694. https://doi.org/10.18632/genesandcancer.155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Humphrey SJ, James DE, Mann M (2015) Protein phosphorylation: a major switch mechanism for metabolic regulation. Trends Endocrinol Metab 26(12):676–687. https://doi.org/10.1016/j.tem.2015.09.013

    Article  CAS  PubMed  Google Scholar 

  55. Dennis MD, Jefferson LS, Kimball SR (2012) Role of p70S6K1-mediated phosphorylation of eIF4B and PDCD4 proteins in the regulation of protein synthesis. J Biol Chem 287(51):42890–42899. https://doi.org/10.1074/jbc.M112.404822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Beilharz K, Nováková L, Fadda D et al (2012) Control of cell division in Streptococcus pneumoniae by the conserved Ser/Thr protein kinase StkP. Proc Natl Acad Sci U S A 109(15):E905–E913. https://doi.org/10.1073/pnas.1119172109

    Article  PubMed  PubMed Central  Google Scholar 

  57. Lin S, Wang C, Zhou J et al (2021) EPSD: a well-annotated data resource of protein phosphorylation sites in eukaryotes. Brief Bioinform 22(1):298–307. https://doi.org/10.1093/bib/bbz169

    Article  CAS  PubMed  Google Scholar 

  58. Rush J, Moritz A, Lee KA et al (2005) Immunoaffinity profiling of tyrosine phosphorylation in cancer cells. Nat Biotechnol 23(1):94–101. https://doi.org/10.1038/nbt1046

    Article  CAS  PubMed  Google Scholar 

  59. Kaneko T, Huang H, Cao X et al (2012) Superbinder SH2 domains act as antagonists of cell signaling. Sci Signal 5(243):ra68. https://doi.org/10.1126/scisignal.2003021

    Article  CAS  PubMed  Google Scholar 

  60. Fuhs SR, Hunter T (2017) pHisphorylation: the emergence of histidine phosphorylation as a reversible regulatory modification. Curr Opin Cell Biol 45:8–16. https://doi.org/10.1016/j.ceb.2016.12.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Cieśla J, Fraczyk T, Rode W (2011) Phosphorylation of basic amino acid residues in proteins: important but easily missed. Acta Biochim Pol 58(2):137–148. https://doi.org/10.18388/abp.2011_2258

    Article  PubMed  Google Scholar 

  62. Falke JJ, Bass RB, Butler SL et al (1997) The two-component signaling pathway of bacterial chemotaxis: a molecular view of signal transduction by receptors, kinases, and adaptation enzymes. Annu Rev Cell Dev Biol 13:457–512. https://doi.org/10.1146/annurev.cellbio.13.1.457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Hardman G, Perkins S, Brownridge PJ et al (2019) Strong anion exchange-mediated phosphoproteomics reveals extensive human non-canonical phosphorylation. EMBO J 38(21):e100847. https://doi.org/10.15252/embj.2018100847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Humphrey SJ, Azimifar SB, Mann M (2015) High-throughput phosphoproteomics reveals in vivo insulin signaling dynamics. Nat Biotechnol 33(9):990–995. https://doi.org/10.1038/nbt.3327

    Article  CAS  PubMed  Google Scholar 

  65. Liu JJ, Sharma K, Zangrandi L et al (2018) In vivo brain GPCR signaling elucidated by phosphoproteomics. Science 360(6395):eaao4927. https://doi.org/10.1126/science.aao4927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Tan H, Yang K, Li Y et al (2017) Integrative proteomics and phosphoproteomics profiling reveals dynamic signaling networks and bioenergetics pathways underlying T cell activation. Immunity 46(3):488–503. https://doi.org/10.1016/j.immuni.2017.02.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Aasebø E, Mjaavatten O, Vaudel M et al (2016) Freezing effects on the acute myeloid leukemia cell proteome and phosphoproteome revealed using optimal quantitative workflows. J Proteomics 145:214–225. https://doi.org/10.1016/j.jprot.2016.03.049

    Article  CAS  PubMed  Google Scholar 

  68. Andersson L, Porath J (1986) Isolation of phosphoproteins by immobilized metal (Fe3+) affinity chromatography. Anal Biochem 154(1):250–254. https://doi.org/10.1016/0003-2697(86)90523-3

    Article  CAS  PubMed  Google Scholar 

  69. Jensen SS, Larsen MR (2007) Evaluation of the impact of some experimental procedures on different phosphopeptide enrichment techniques. Rapid Commun Mass Spectrom 21(22):3635–3645. https://doi.org/10.1002/rcm.3254

    Article  CAS  PubMed  Google Scholar 

  70. Ficarro SB, McCleland ML, Stukenberg PT et al (2002) Phosphoproteome analysis by mass spectrometry and its application to Saccharomyces cerevisiae. Nat Biotechnol 20(3):301–305. https://doi.org/10.1038/nbt0302-301

    Article  CAS  PubMed  Google Scholar 

  71. Lai AC-Y, Tsai C-F, Hsu C-C et al (2012) Complementary Fe3+ and Ti4+ immobilized metal ion affinity chromatography for purification of acidic and basic phosphopeptides. Rapid Commun Mass Spectrom 26(18):2186–2194. https://doi.org/10.1002/rcm.6327

    Article  CAS  PubMed  Google Scholar 

  72. Tsai CF, Hsu CC, Hung JN et al (2014) Sequential phosphoproteomic enrichment through complementary metal-directed immobilized metal ion affinity chromatography. Anal Chem 86(1):685–693. https://doi.org/10.1021/ac4031175

    Article  CAS  PubMed  Google Scholar 

  73. Iliuk AB, Martin VA, Alicie BM et al (2010) In-depth analyses of kinase-dependent tyrosine phosphoproteomes based on metal ion-functionalized soluble nanopolymers. Mol Cell Proteomics 9(10):2162–2172. https://doi.org/10.1074/mcp.M110.000091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Xue L, Wang WH, Iliuk A et al (2012) Sensitive kinase assay linked with phosphoproteomics for identifying direct kinase substrates. Proc Natl Acad Sci U S A 109(15):5615–5620. https://doi.org/10.1073/pnas.1119418109

    Article  PubMed  PubMed Central  Google Scholar 

  75. Leitner A (2010) Phosphopeptide enrichment using metal oxide affinity chromatography. Trends Anal Chem 29(2):177–185. https://doi.org/10.1016/j.trac.2009.08.007

    Article  CAS  Google Scholar 

  76. Pinkse MWH, Uitto PM, Hilhorst MJ et al (2004) Selective isolation at the femtomole level of phosphopeptides from proteolytic digests using 2D-NanoLC-ESI-MS/MS and titanium oxide precolumns. Anal Chem 76(14):3935–3943. https://doi.org/10.1021/ac0498617

    Article  CAS  PubMed  Google Scholar 

  77. Werth EG, McConnell EW, Couso Lianez I et al (2019) Investigating the effect of target of rapamycin kinase inhibition on the Chlamydomonas reinhardtii phosphoproteome: from known homologs to new targets. New Phytol 221(1):247–260. https://doi.org/10.1111/nph.15339

    Article  CAS  PubMed  Google Scholar 

  78. Ma WF, Zhang C, Zhang YT et al (2014) Magnetic MSP@ZrO2 microspheres with yolk-shell structure: designed synthesis and application in highly selective enrichment of phosphopeptides. Langmuir 30(22):6602–6611. https://doi.org/10.1021/la501381v

    Article  CAS  PubMed  Google Scholar 

  79. Huang SY, Chen YC (2013) Magnetic nanoparticle-based platform for characterization of histidine-rich proteins and peptides. Anal Chem 85(6):3347–3354. https://doi.org/10.1021/ac4000128

    Article  CAS  PubMed  Google Scholar 

  80. Li Y, Leng T, Lin H et al (2007) Preparation of Fe3O4@ZrO2 core—shell microspheres as affinity probes for selective enrichment and direct determination of phosphopeptides using matrix-assisted laser desorption ionization mass spectrometry. J Proteome Res 6(11):4498–4510. https://doi.org/10.1021/pr070167s

    Article  CAS  PubMed  Google Scholar 

  81. Mann M, Ong SE, Grønborg M et al (2002) Analysis of protein phosphorylation using mass spectrometry: deciphering the phosphoproteome. Trends Biotechnol 20(6):261–268. https://doi.org/10.1016/S0167-7799(02)01944-3

    Article  CAS  PubMed  Google Scholar 

  82. Bodenmiller B, Mueller LN, Mueller M et al (2007) Reproducible isolation of distinct, overlapping segments of the phosphoproteome. Nat Methods 4(3):231–237. https://doi.org/10.1038/nmeth1005

    Article  CAS  PubMed  Google Scholar 

  83. Thingholm TE, Jensen ON, Robinson PJ et al (2008) SIMAC (sequential elution from IMAC), a phosphoproteomics strategy for the rapid separation of monophosphorylated from multiply phosphorylated peptides. Mol Cell Proteomics 7(4):661–671. https://doi.org/10.1074/mcp.M700362-MCP200

    Article  CAS  PubMed  Google Scholar 

  84. Peng J, Zhang H, Li X et al (2016) Dual-metal centered zirconium-organic framework: a metal-affinity probe for highly specific interaction with phosphopeptides. ACS Appl Mater Interfaces 8(51):35012–35020. https://doi.org/10.1021/acsami.6b12630

    Article  CAS  PubMed  Google Scholar 

  85. Ruprecht B, Koch H, Medard G et al (2015) Comprehensive and reproducible phosphopeptide enrichment using iron immobilized metal ion affinity chromatography (Fe-IMAC) columns. Mol Cell Proteomics 14(1):205–215. https://doi.org/10.1074/mcp.M114.043109

    Article  CAS  PubMed  Google Scholar 

  86. Beltran L, Cutillas PR (2012) Advances in phosphopeptide enrichment techniques for phosphoproteomics. Amino Acids 43(3):1009–1024. https://doi.org/10.1007/s00726-012-1288-9

    Article  CAS  PubMed  Google Scholar 

  87. Sugiyama N, Masuda T, Shinoda K et al (2007) Phosphopeptide enrichment by aliphatic hydroxy acid-modified metal oxide chromatography for nano-LC-MS/MS in proteomics applications. Mol Cell Proteomics 6(6):1103–1109. https://doi.org/10.1074/mcp.T600060-MCP200

    Article  CAS  PubMed  Google Scholar 

  88. Dubrovska A, Souchelnytskyi S (2005) Efficient enrichment of intact phosphorylated proteins by modified immobilized metal-affinity chromatography. Proteomics 5(18):4678–4683. https://doi.org/10.1002/pmic.200500002

    Article  CAS  PubMed  Google Scholar 

  89. Hwang L, Ayaz-Guner S, Gregorich ZR et al (2015) Specific enrichment of phosphoproteins using functionalized multivalent nanoparticles. J Am Chem Soc 137(7):2432–2435. https://doi.org/10.1021/ja511833y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Liu W, Zheng J, Li S et al (2015) Aluminium glycinate functionalized silica nanoparticles for highly specific separation of phosphoproteins. J Mater Chem B 3(31):6528–6535. https://doi.org/10.1039/c5tb01055a

    Article  CAS  PubMed  Google Scholar 

  91. Schieber M, Chandel NS (2014) ROS function in redox signaling and oxidative stress. Curr Biol 24(10):R453–R462. https://doi.org/10.1016/j.cub.2014.03.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Poole LB, Nelson KJ (2008) Discovering mechanisms of signaling-mediated cysteine oxidation. Curr Opin Chem Biol 12(1):18–24. https://doi.org/10.1016/j.cbpa.2008.01.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Couturier J, Chibani K, Jacquot JP et al (2013) Cysteine-based redox regulation and signaling in plants. Front Plant Sci 4:105. https://doi.org/10.3389/fpls.2013.00105

    Article  PubMed  PubMed Central  Google Scholar 

  94. Paulech J, Solis N, Edwards AVG et al (2013) Large-scale capture of peptides containing reversibly oxidized cysteines by thiol-disulfide exchange applied to the myocardial redox proteome. Anal Chem 85(7):3774–3780. https://doi.org/10.1021/ac400166e

    Article  CAS  PubMed  Google Scholar 

  95. Guo J, Gaffrey MJ, Su D et al (2014) Resin-assisted enrichment of thiols as a general strategy for proteomic profiling of cysteine-based reversible modifications. Nat Protoc 9(1):64–75. https://doi.org/10.1038/nprot.2013.161

    Article  CAS  PubMed  Google Scholar 

  96. Leonard SE, Carroll KS (2011) Chemical “omics” approaches for understanding protein cysteine oxidation in biology. Curr Opin Chem Biol 15(1):88–102. https://doi.org/10.1016/j.cbpa.2010.11.012

    Article  CAS  PubMed  Google Scholar 

  97. Murray CI, Van Eyk JE (2012) Chasing cysteine oxidative modifications: proteomic tools for characterizing cysteine redox status. Circ Cardiovasc Genet 5(5):591. https://doi.org/10.1161/CIRCGENETICS.111.961425

    Article  PubMed  PubMed Central  Google Scholar 

  98. Jaffrey SR, Erdjument-Bromage H, Ferris CD et al (2001) Protein S-nitrosylation: a physiological signal for neuronal nitric oxide. Nat Cell Biol 3(2):193–197. https://doi.org/10.1038/35055104

    Article  CAS  PubMed  Google Scholar 

  99. McConnell EW, Werth EG, Hicks LM (2018) The phosphorylated redox proteome of Chlamydomonas reinhardtii: revealing novel means for regulation of protein structure and function. Redox Biol 17:35–46. https://doi.org/10.1016/j.redox.2018.04.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Ford MM, Smythers AL, McConnell EW et al (2019) Inhibition of TOR in Chlamydomonas reinhardtii leads to rapid cysteine oxidation reflecting sustained physiological changes. Cells 8(10):1171. https://doi.org/10.3390/cells8101171

    Article  CAS  PubMed Central  Google Scholar 

  101. Smythers AL, McConnell EW, Lewis HC et al (2020) Photosynthetic metabolism and nitrogen reshuffling are regulated by reversible cysteine thiol oxidation following nitrogen deprivation in Chlamydomonas. Plants 9(6):784. https://doi.org/10.3390/plants9060784

    Article  CAS  PubMed Central  Google Scholar 

  102. Murray CI, Uhrigshardt H, O’Meally RN et al (2012) Identification and quantification of S-nitrosylation by cysteine reactive tandem mass tag switch assay. Mol Cell Proteomics 11(2):1–12. https://doi.org/10.1074/mcp.M111.013441

    Article  CAS  Google Scholar 

  103. Poole LB, Zeng BB, Knaggs SA et al (2005) Synthesis of chemical probes to map sulfenic acid modifications on proteins. Bioconjug Chem 16(6):1624–1628. https://doi.org/10.1021/bc050257s

    Article  CAS  PubMed  Google Scholar 

  104. Akter S, Fu L, Jung Y et al (2018) Chemical proteomics reveals new targets of cysteine sulfinic acid reductase. Nat Chem Biol 14(11):995–1004. https://doi.org/10.1038/s41589-018-0116-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Seneviratne U, Nott A, Bhat VB et al (2016) S-nitrosation of proteins relevant to Alzheimer’s disease during early stages of neurodegeneration. Proc Natl Acad Sci U S A 113(15):4152–4157. https://doi.org/10.1073/pnas.1521318113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Martin BR, Cravatt BF (2009) Large-scale profiling of protein palmitoylation in mammalian cells. Nat Methods 6(2):135–138. https://doi.org/10.1038/nmeth.1293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Held JM (2020) Redox systems biology: harnessing the sentinels of the cysteine redoxome. Antioxid Redox Signal 32(10):659–676. https://doi.org/10.1089/ars.2019.7725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Shental-Bechor D, Levy Y (2008) Effect of glycosylation on protein folding: a close look at thermodynamic stabilization. Proc Natl Acad Sci U S A 105(24):8256–8261. https://doi.org/10.1073/pnas.0801340105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Rudd PM, Elliott T, Cresswell P et al (2001) Glycosylation and the immune system. Science 291(5512):2370–2376. https://doi.org/10.1126/science.291.5512.2370

    Article  CAS  PubMed  Google Scholar 

  110. Moremen KW, Tiemeyer M, Nairn AV (2012) Vertebrate protein glycosylation: diversity, synthesis and function. Nat Rev Mol Cell Biol 13(7):448–462. https://doi.org/10.1038/nrm3383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Zhu Y, Willems LI, Salas D et al (2020) Tandem bioorthogonal labeling uncovers endogenous cotranslationally O-GlcNAc modified nascent proteins. J Am Chem Soc 142(37):15729–15739. https://doi.org/10.1021/jacs.0c04121

    Article  CAS  PubMed  Google Scholar 

  112. Zhang H, Li X-J, Martin DB et al (2003) Identification and quantification of N-linked glycoproteins using hydrazide chemistry, stable isotope labeling and mass spectrometry. Nat Biotechnol 21(6):660–666. https://doi.org/10.1038/nbt827

    Article  CAS  PubMed  Google Scholar 

  113. Kameyama A, Thet Tin WW, Toyoda M et al (2019) A practical method of liberating O-linked glycans from glycoproteins using hydroxylamine and an organic superbase. Biochem Biophys Res Commun 513(1):186–192. https://doi.org/10.1016/j.bbrc.2019.03.144

    Article  CAS  PubMed  Google Scholar 

  114. Cao J, Shen C, Wang H et al (2009) Identification of N-glycosylation sites on secreted proteins of human hepatocellular carcinoma cells with a complementary proteomics approach. J Proteome Res 8(2):662–672. https://doi.org/10.1021/pr800826u

    Article  CAS  PubMed  Google Scholar 

  115. Xia C, Jiao F, Gao F et al (2018) Two-dimensional MoS2-based zwitterionic hydrophilic interaction liquid chromatography material for the specific enrichment of glycopeptides. Anal Chem 90(11):6651–6659. https://doi.org/10.1021/acs.analchem.8b00461

    Article  CAS  PubMed  Google Scholar 

  116. Nilsson J, Rüetschi U, Halim A et al (2009) Enrichment of glycopeptides for glycan structure and attachment site identification. Nat Methods 6(11):809–811. https://doi.org/10.1038/nmeth.1392

    Article  CAS  PubMed  Google Scholar 

  117. Calvano CD, Zambonin CG, Jensen ON (2008) Assessment of lectin and HILIC based enrichment protocols for characterization of serum glycoproteins by mass spectrometry. J Proteomics 71(3):304–317. https://doi.org/10.1016/j.jprot.2008.06.013

    Article  CAS  PubMed  Google Scholar 

  118. Zhang B, Yu RZ, Yu YH et al (2018) Lectin inspired polymers based on the dipeptide Ser-Asp for glycopeptide enrichment. Analyst 143(21):5090–5093. https://doi.org/10.1039/c8an01258j

    Article  CAS  PubMed  Google Scholar 

  119. Waniwan JT, Chen YJ, Capangpangan R et al (2018) Glycoproteomic alterations in drug-resistant nonsmall cell lung cancer cells revealed by lectin magnetic nanoprobe-based mass spectrometry. J Proteome Res 17(11):3761–3773. https://doi.org/10.1021/acs.jproteome.8b00433

    Article  CAS  PubMed  Google Scholar 

  120. Zeng Z, Hincapie M, Pitteri SJ et al (2011) A proteomics platform combining depletion, multi-lectin affinity chromatography (M-LAC), and isoelectric focusing to study the breast cancer proteome. Anal Chem 83(12):4845–4854. https://doi.org/10.1021/ac2002802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Plavina T, Wakshull E, Hancock WS et al (2007) Combination of abundant protein depletion and multi-lectin affinity chromatography (M-LAC) for plasma protein biomarker discovery. J Proteome Res 6(2):662–671. https://doi.org/10.1021/pr060413k

    Article  CAS  PubMed  Google Scholar 

  122. Imberty A, Mitchell EP, Wimmerová M (2005) Structural basis of high-affinity glycan recognition by bacterial and fungal lectins. Curr Opin Struct Biol 15(5):525–534. https://doi.org/10.1016/j.sbi.2005.08.003

    Article  CAS  PubMed  Google Scholar 

  123. Sparbier K, Koch S, Kessler I et al (2005) Selective isolation of glycoproteins and glycopeptides for MALDI-TOF MS detection supported by magnetic particles. J Biomol Tech 16(4):407–411

    PubMed  PubMed Central  Google Scholar 

  124. Qu Y, Liu J, Yang K et al (2012) Boronic acid functionalized core-shell polymer nanoparticles prepared by distillation precipitation polymerization for glycopeptide enrichment. Chem A Eur J 18(29):9056–9062. https://doi.org/10.1002/chem.201103514

    Article  CAS  Google Scholar 

  125. Wohlgemuth J, Karas M, Jiang W et al (2010) Enhanced glyco-profiling by specific glycopeptide enrichment and complementary monolithic nano-LC (ZIC-HILIC/RP18e)/ESI-MS analysis. J Sep Sci 33(6–7):880–890. https://doi.org/10.1002/jssc.200900771

    Article  CAS  PubMed  Google Scholar 

  126. Gaunitz S, Nagy G, Pohl NLB et al (2017) Recent advances in the analysis of complex glycoproteins. Anal Chem 89(1):389–413. https://doi.org/10.1021/acs.analchem.6b04343

    Article  CAS  PubMed  Google Scholar 

  127. Ahn YH, Kim JY, Yoo JS (2015) Quantitative mass spectrometric analysis of glycoproteins combined with enrichment methods. Mass Spectrom Rev 34(2):148–165. https://doi.org/10.1002/mas.21428

    Article  CAS  PubMed  Google Scholar 

  128. Ma J, Hart GW (2014) O-GlcNAc profiling: from proteins to proteomes. Clin Proteomics 11(1):8. https://doi.org/10.1186/1559-0275-11-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Steentoft C, Vakhrushev SY, Joshi HJ et al (2013) Precision mapping of the human O-GalNAc glycoproteome through SimpleCell technology. EMBO J 32(10):1478–1488. https://doi.org/10.1038/emboj.2013.79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Akmal MA, Rasool N, Khan YD (2017) Prediction of N-linked glycosylation sites using position relative features and statistical moments. PLoS One 12(8):e0181966. https://doi.org/10.1371/journal.pone.0181966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Hassan H, Badr A, Abdelhalim MB (2015) Prediction of O-glycosylation sites using random forest and GA-tuned PSO technique. Bioinform Biol Insights 9:103–109. https://doi.org/10.4137/BBI.S26864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Chauhan JS, Rao A, Raghava GPS (2013) In silico platform for prediction of N-, O- and C-glycosites in eukaryotic protein sequences. PLoS One 8(6):e67008. https://doi.org/10.1371/journal.pone.0067008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Hamby SE, Hirst JD (2008) Prediction of glycosylation sites using random forests. BMC Bioinformatics 9(1):500. https://doi.org/10.1186/1471-2105-9-500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Johnson ES (2002) Ubiquitin branches out. Nat Cell Biol 4(12):295. https://doi.org/10.1038/ncb1202-e295

    Article  CAS  Google Scholar 

  135. Sun L, Chen ZJ (2004) The novel functions of ubiquitination in signaling. Curr Opin Cell Biol 16(2):119–126. https://doi.org/10.1016/j.ceb.2004.02.005

    Article  CAS  PubMed  Google Scholar 

  136. Akimov V, Rigbolt KTG, Nielsen MM et al (2011) Characterization of ubiquitination dependent dynamics in growth factor receptor signaling by quantitative proteomics. Mol Biosyst 7(12):3223–3233. https://doi.org/10.1039/c1mb05185g

    Article  CAS  PubMed  Google Scholar 

  137. Hjerpe R, Aillet F, Lopitz-Otsoa F et al (2009) Efficient protection and isolation of ubiquitylated proteins using tandem ubiquitin-binding entities. EMBO Rep 10(11):1250–1258. https://doi.org/10.1038/embor.2009.192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Scott D, Oldham NJ, Strachan J et al (2015) Ubiquitin-binding domains: mechanisms of ubiquitin recognition and use as tools to investigate ubiquitin-modified proteomes. Proteomics 15(5–6):844–861. https://doi.org/10.1002/pmic.201400341

    Article  CAS  PubMed  Google Scholar 

  139. Hicke L, Schubert HL, Hill CP (2005) Ubiquitin-binding domains. Nat Rev Mol Cell Biol 6(8):610–621. https://doi.org/10.1038/nrm1701

    Article  CAS  PubMed  Google Scholar 

  140. Danielsen JMR, Sylvestersen KB, Bekker-Jensen S et al (2011) Mass spectrometric analysis of lysine ubiquitylation reveals promiscuity at site level. Mol Cell Proteomics 10(3):1–12. https://doi.org/10.1074/mcp.M110.003590

    Article  CAS  Google Scholar 

  141. Peng J, Schwartz D, Elias JE et al (2003) A proteomics approach to understanding protein ubiquitination. Nat Biotechnol 21(8):921–926. https://doi.org/10.1038/nbt849

    Article  CAS  PubMed  Google Scholar 

  142. Pirone L, Xolalpa W, Sigursson JO et al (2017) A comprehensive platform for the analysis of ubiquitin-like protein modifications using in vivo biotinylation. Sci Rep 7:40756. https://doi.org/10.1038/srep40756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Mattern M, Sutherland J, Kadimisetty K et al (2019) Using ubiquitin binders to decipher the ubiquitin code. Trends Biochem Sci 44(7):599–615. https://doi.org/10.1016/j.tibs.2019.01.011

    Article  CAS  PubMed  Google Scholar 

  144. Kim W, Bennett EJ, Huttlin EL et al (2011) Systematic and quantitative assessment of the ubiquitin-modified proteome. Mol Cell 44(2):325–340. https://doi.org/10.1016/j.molcel.2011.08.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Wagner SA, Beli P, Weinert BT et al (2012) Proteomic analyses reveal divergent ubiquitylation site patterns in murine tissues. Mol Cell Proteomics 11(12):1578–1585. https://doi.org/10.1074/mcp.M112.017905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Wagner SA, Beli P, Weinert BT et al (2011) A proteome-wide, quantitative survey of in vivo ubiquitylation sites reveals widespread regulatory roles. Mol Cell Proteomics 10(10):M111.013284. https://doi.org/10.1074/mcp.m111.013284

    Article  PubMed  PubMed Central  Google Scholar 

  147. Udeshi ND, Svinkina T, Mertins P et al (2013) Refined preparation and use of anti-diglycine remnant (k-ε-gg) antibody enables routine quantification of 10,000s of ubiquitination sites in single proteomics experiments. Mol Cell Proteomics 12(3):825–831. https://doi.org/10.1074/mcp.O112.027094

    Article  CAS  PubMed  Google Scholar 

  148. Drazic A, Myklebust LM, Ree R et al (2016) The world of protein acetylation. Biochim Biophys Acta Proteins Proteomics 1864(10):1372–1401. https://doi.org/10.1016/j.bbapap.2016.06.007

    Article  CAS  Google Scholar 

  149. Inuzuka H, Gao D, Finley LWS et al (2012) Acetylation-dependent regulation of Skp2 function. Cell 150(1):179–193. https://doi.org/10.1016/j.cell.2012.05.038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Li T, Diner BA, Chen J et al (2012) Acetylation modulates cellular distribution and DNA sensing ability of interferon-inducible protein IFI16. Proc Natl Acad Sci U S A 109(26):10558–10563. https://doi.org/10.1073/pnas.1203447109

    Article  PubMed  PubMed Central  Google Scholar 

  151. Cao W, Bao C, Padalko E et al (2008) Acetylation of mitogen-activated protein kinase phosphatase-1 inhibits Toll-like receptor signaling. J Exp Med 205(6):1491–1503. https://doi.org/10.1084/jem.20071728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Narita T, Weinert BT, Choudhary C (2019) Functions and mechanisms of non-histone protein acetylation. Nat Rev Mol Cell Biol 20(3):156–174. https://doi.org/10.1038/s41580-018-0081-3

    Article  CAS  PubMed  Google Scholar 

  153. Dillon SC, Zhang X, Trievel RC et al (2005) The SET-domain protein superfamily: protein lysine methyltransferases. Genome Biol 6(8):1–10. https://doi.org/10.1186/gb-2005-6-8-227

    Article  CAS  Google Scholar 

  154. Dhayalan A, Kudithipudi S, Rathert P et al (2011) Specificity analysis-based identification of new methylation targets of the SET7/9 protein lysine methyltransferase. Chem Biol 18(1):111–120. https://doi.org/10.1016/j.chembiol.2010.11.014

    Article  CAS  PubMed  Google Scholar 

  155. Mazur PK, Reynoird N, Khatri P et al (2014) SMYD3 links lysine methylation of MAP3K2 to Ras-driven cancer. Nature 510(7504):283–287. https://doi.org/10.1038/nature13320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Bedford MT, Clarke SG (2009) Protein arginine methylation in mammals: who, what, and why. Mol Cell 33(1):1–13. https://doi.org/10.1016/j.molcel.2008.12.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Kwak YT, Guo J, Prajapati S et al (2003) Methylation of SPT5 regulates its interaction with RNA polymerase II and transcriptional elongation properties. Mol Cell 11(4):1055–1066. https://doi.org/10.1016/S1097-2765(03)00101-1

    Article  CAS  PubMed  Google Scholar 

  158. Guo A, Gu H, Zhou J et al (2014) Immunoaffinity enrichment and mass spectrometry analysis of protein methylation. Mol Cell Proteomics 13(1):372–387. https://doi.org/10.1074/mcp.O113.027870

    Article  CAS  PubMed  Google Scholar 

  159. Cao XJ, Arnaudo AM, Garcia BA (2013) Large-scale global identification of protein lysine methylation in vivo. Epigenetics 8(5):477–485. https://doi.org/10.4161/epi.24547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Nielsen ML, Savitski MM, Zubarev RA (2006) Extent of modifications in human proteome samples and their effect on dynamic range of analysis in shotgun proteomics. Mol Cell Proteomics 5(12):2384–2391. https://doi.org/10.1074/mcp.M600248-MCP200

    Article  CAS  PubMed  Google Scholar 

  161. Liu T, Qian WJ, Gritsenko MA et al (2005) Human plasma N-glycoproteome analysis by immunoaffinity subtraction, hydrazide chemistry, and mass spectrometry. J Proteome Res 4(6):2070–2080. https://doi.org/10.1021/pr0502065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Gilar M, Olivova P, Daly AE et al (2005) Orthogonality of separation in two-dimensional liquid chromatography. Anal Chem 77(19):6426–6434. https://doi.org/10.1021/ac050923i

    Article  CAS  PubMed  Google Scholar 

  163. Song C, Ye M, Han G et al (2010) Reversed-phase-reversed-phase liquid chromatography approach with high orthogonality for multidimensional separation of phosphopeptides. Anal Chem 82(1):53–56. https://doi.org/10.1021/ac9023044

    Article  CAS  PubMed  Google Scholar 

  164. Yang F, Shen Y, Camp DG et al (2012) High-pH reversed-phase chromatography with fraction concatenation for 2D proteomic analysis. Expert Rev Proteomics 9(2):129–134. https://doi.org/10.1586/epr.12.15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Wang Y, Yang F, Gritsenko MA et al (2011) Reversed-phase chromatography with multiple fraction concatenation strategy for proteome profiling of human MCF10A cells. Proteomics 11(10):2019–2026. https://doi.org/10.1002/pmic.201000722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Washburn MP, Wolters D, Yates JR (2001) Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat Biotechnol 19(3):242–247. https://doi.org/10.1038/85686

    Article  CAS  PubMed  Google Scholar 

  167. Pankow S, Bamberger C, Yates JR (2019) A posttranslational modification code for CFTR maturation is altered in cystic fibrosis. Sci Signal 12(562):eaan7984. https://doi.org/10.1126/scisignal.aan7984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Delmotte N, Lasaosa M, Tholey A et al (2007) Two-dimensional reversed-phase x ion-pair reversed-phase HPLC: an alternative approach to high-resolution peptide separation for shotgun proteome analysis. J Proteome Res 6(11):4363–4373. https://doi.org/10.1021/pr070424t

    Article  CAS  PubMed  Google Scholar 

  169. Di Palma S, Boersema PJ, Heck AJR et al (2011) Zwitterionic hydrophilic interaction liquid chromatography (ZIC-HILIC and ZIC-cHILIC) provide high resolution separation and increase sensitivity in proteome analysis. Anal Chem 83(9):3440–3447. https://doi.org/10.1021/ac103312e

    Article  CAS  PubMed  Google Scholar 

  170. Boersema PJ, Divecha N, Heck AJR et al (2007) Evaluation and optimization of ZIC-HILIC-RP as an alternative MudPIT strategy. J Proteome Res 6(3):937–946. https://doi.org/10.1021/pr060589m

    Article  CAS  PubMed  Google Scholar 

  171. Dehghani A, Gödderz M, Winter D (2018) Tip-based fractionation of batch-enriched phosphopeptides facilitates easy and robust phosphoproteome analysis. J Proteome Res 17(1):46–54. https://doi.org/10.1021/acs.jproteome.7b00256

    Article  CAS  PubMed  Google Scholar 

  172. Humphrey SJ, Karayel O, James DE et al (2018) High-throughput and high-sensitivity phosphoproteomics with the EasyPhos platform. Nat Protoc 13(9):1897–1916. https://doi.org/10.1038/s41596-018-0014-9

    Article  CAS  PubMed  Google Scholar 

  173. Scheltema RA, Hauschild JP, Lange O et al (2014) The Q exactive HF, a benchtop mass spectrometer with a pre-filter, high-performance quadrupole and an ultra-high-field orbitrap analyzer. Mol Cell Proteomics 13(12):3698–3708. https://doi.org/10.1074/mcp.M114.043489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Andrews GL, Simons BL, Young JB et al (2011) Performance characteristics of a new hybrid quadrupole time-of-flight tandem mass spectrometer (TripleTOF 5600). Anal Chem 83(13):5442–5446. https://doi.org/10.1021/ac200812d

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Scigelova M, Makarov A (2006) Orbitrap mass analyzer—overview and applications in proteomics. Proteomics 1(1–2):16–21. https://doi.org/10.1002/pmic.200600528

    Article  CAS  Google Scholar 

  176. Michalski A, Damoc E, Hauschild JP et al (2011) Mass spectrometry-based proteomics using Q exactive, a high-performance benchtop quadrupole orbitrap mass spectrometer. Mol Cell Proteomics 10(9):M111.011015. https://doi.org/10.1074/mcp.M111.011015

    Article  PubMed  PubMed Central  Google Scholar 

  177. Michalski A, Damoc E, Lange O et al (2012) Ultra high resolution linear ion trap orbitrap mass spectrometer (orbitrap elite) facilitates top down LC MS/MS and versatile peptide fragmentation modes. Mol Cell Proteomics 11(3):1–11. https://doi.org/10.1074/mcp.O111.013698

    Article  CAS  Google Scholar 

  178. Batth TS, Francavilla C, Olsen JV (2014) Off-line high-pH reversed-phase fractionation for in-depth phosphoproteomics. J Proteome Res 13(12):6176–6186. https://doi.org/10.1021/pr500893m

    Article  CAS  PubMed  Google Scholar 

  179. Kelstrup CD, Bekker-Jensen DB, Arrey TN et al (2018) Performance evaluation of the Q exactive HF-X for shotgun proteomics. J Proteome Res 17(1):727–738. https://doi.org/10.1021/acs.jproteome.7b00602

    Article  CAS  PubMed  Google Scholar 

  180. Boersema PJ, Mohammed S, Heck AJR (2009) Phosphopeptide fragmentation and analysis by mass spectrometry. J Mass Spectrom 44(6):861–878. https://doi.org/10.1002/jms.1599

    Article  CAS  PubMed  Google Scholar 

  181. Engholm-Keller K, Larsen MR (2013) Technologies and challenges in large-scale phosphoproteomics. Proteomics 13(6):910–931. https://doi.org/10.1002/pmic.201200484

    Article  CAS  PubMed  Google Scholar 

  182. Villén J, Beausoleil SA, Gygi SP (2008) Evaluation of the utility of neutral-loss-dependent MS3 strategies in large-scale phosphorylation analysis. Proteomics 8(21):4444–4452. https://doi.org/10.1002/pmic.200800283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Riley NM, Malaker SA, Driessen MD et al (2020) Optimal dissociation methods differ for N- and O-glycopeptides. J Proteome Res 19(8):3286–3301. https://doi.org/10.1021/acs.jproteome.0c00218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Syka JEP, Coon JJ, Schroeder MJ et al (2004) Peptide and protein sequence analysis by electron transfer dissociation mass spectrometry. Proc Natl Acad Sci U S A 101(26):9528–9533. https://doi.org/10.1073/pnas.0402700101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Molina H, Horn DM, Tang N et al (2007) Global proteomic profiling of phosphopeptides using electron transfer dissociation tandem mass spectrometry. Proc Natl Acad Sci U S A 104(7):2199–2204. https://doi.org/10.1073/pnas.0611217104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Good DM, Wirtala M, McAlister GC et al (2007) Performance characteristics of electron transfer dissociation mass spectrometry. Mol Cell Proteomics 6(11):1942–1951. https://doi.org/10.1074/mcp.M700073-MCP200

    Article  CAS  PubMed  Google Scholar 

  187. Rose CM, Rush MJP, Riley NM et al (2015) A calibration routine for efficient ETD in large-scale proteomics. J Am Soc Mass Spectrom 26(11):1848–1857. https://doi.org/10.1007/s13361-015-1183-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Frese CK, Altelaar AFM, Van Den Toorn H et al (2012) Toward full peptide sequence coverage by dual fragmentation combining electron-transfer and higher-energy collision dissociation tandem mass spectrometry. Anal Chem 84(22):9668–9673. https://doi.org/10.1021/ac3025366

    Article  CAS  PubMed  Google Scholar 

  189. Kong AT, Leprevost FV, Avtonomov DM et al (2017) MSFragger: ultrafast and comprehensive peptide identification in mass spectrometry-based proteomics. Nat Methods 14(5):513–520. https://doi.org/10.1038/nmeth.4256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Dorfer V, Pichler P, Stranzl T et al (2014) MS Amanda, a universal identification algorithm optimized for high accuracy tandem mass spectra. J Proteome Res 13(8):3679–3684. https://doi.org/10.1021/pr500202e

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Craig R, Beavis RC (2004) TANDEM: matching proteins with tandem mass spectra. Bioinformatics 20(9):1466–1467. https://doi.org/10.1093/bioinformatics/bth092

    Article  CAS  PubMed  Google Scholar 

  192. Kim S, Pevzner PA (2014) MS-GF+ makes progress towards a universal database search tool for proteomics. Nat Commun 5:5277. https://doi.org/10.1038/ncomms6277

    Article  CAS  PubMed  Google Scholar 

  193. Solntsev SK, Shortreed MR, Frey BL et al (2018) Enhanced global post-translational modification discovery with MetaMorpheus. J Proteome Res 17(5):1844–1851. https://doi.org/10.1021/acs.jproteome.7b00873

    Article  CAS  PubMed  Google Scholar 

  194. Eng JK, Jahan TA, Hoopmann MR (2013) Comet: an open-source MS/MS sequence database search tool. Proteomics 13(1):22–24. https://doi.org/10.1002/pmic.201200439

    Article  CAS  PubMed  Google Scholar 

  195. Beausoleil SA, Villén J, Gerber SA et al (2006) A probability-based approach for high-throughput protein phosphorylation analysis and site localization. Nat Biotechnol 24(10):1285–1292. https://doi.org/10.1038/nbt1240

    Article  CAS  PubMed  Google Scholar 

  196. Bailey CM, Sweet SMM, Cunningham DL et al (2009) SLoMo: automated site localization of modifications from ETD/ECD mass spectra. J Proteome Res 8(4):1965–1971. https://doi.org/10.1021/pr800917p

    Article  CAS  PubMed  Google Scholar 

  197. Fermin D, Avtonomov D, Choi H et al (2015) LuciPHOr2: site localization of generic post-translational modifications from tandem mass spectrometry data. Bioinformatics 31(7):1141–1143. https://doi.org/10.1093/bioinformatics/btu788

    Article  CAS  PubMed  Google Scholar 

  198. Savitski MM, Lemeer S, Boesche M et al (2011) Confident phosphorylation site localization using the mascot delta score. Mol Cell Proteomics 10(2):S1–S12. https://doi.org/10.1074/mcp.M110.003830

    Article  CAS  Google Scholar 

  199. Taus T, Köcher T, Pichler P et al (2011) Universal and confident phosphorylation site localization using phosphoRS. J Proteome Res 10(12):5354–5362. https://doi.org/10.1021/pr200611n

    Article  CAS  PubMed  Google Scholar 

  200. Elias JE, Gygi SP (2007) Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry. Nat Methods 4(3):207–214. https://doi.org/10.1038/nmeth1019

    Article  CAS  PubMed  Google Scholar 

  201. Elias JE, Gygi SP (2010) Target-decoy search strategy for mass spectrometry-based proteomics. Methods Mol Biol 60:455–471. https://doi.org/10.1007/978-1-60,761-444-9_5

    Article  Google Scholar 

  202. Olsen JV, Vermeulen M, Santamaria A et al (2010) Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis. Sci Signal 3(104):ra3. https://doi.org/10.1126/scisignal.2000475

    Article  CAS  PubMed  Google Scholar 

  203. Udeshi ND, Mani DR, Eisenhaure T et al (2012) Methods for quantification of in vivo changes in protein ubiquitination following proteasome and deubiquitinase inhibition. Mol Cell Proteomics 11(5):148–159. https://doi.org/10.1074/mcp.M111.016857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Dupree EJ, Jayathirtha M, Yorkey H et al (2020) A critical review of bottom-up proteomics: the good, the bad, and the future of this field. Proteomes 8(3):1–26. https://doi.org/10.3390/proteomes8030014

    Article  CAS  Google Scholar 

  205. Chick JM, Kolippakkam D, Nusinow DP et al (2015) A mass-tolerant database search identifies a large proportion of unassigned spectra in shotgun proteomics as modified peptides. Nat Biotechnol 33(7):743–749. https://doi.org/10.1038/nbt.3267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Liu K, Li S, Wang L et al (2020) Full-spectrum prediction of peptides tandem mass spectra using deep neural network. Anal Chem 92(6):4275–4283. https://doi.org/10.1021/acs.analchem.9b04867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Olsen JV, Blagoev B, Gnad F et al (2006) Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell 127(3):635–648. https://doi.org/10.1016/j.cell.2006.09.026

    Article  CAS  PubMed  Google Scholar 

  208. Locard-Paulet M, Bouyssié D, Froment C et al (2020) Comparing 22 popular phosphoproteomics pipelines for peptide identification and site localization. J Proteome Res 19(3):1338–1345. https://doi.org/10.1021/acs.jproteome.9b00679

    Article  CAS  PubMed  Google Scholar 

  209. Chen Z, Chen YZ, Wang XF et al (2011) Prediction of ubiquitination sites by using the composition of K-Spaced amino acid pairs. PLoS One 6(7):e22930. https://doi.org/10.1371/journal.pone.0022930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Swaney DL, Beltrao P, Starita L et al (2013) Global analysis of phosphorylation and ubiquitylation cross-talk in protein degradation. Nat Methods 10(7):676–682. https://doi.org/10.1038/nmeth.2519

    Article  CAS  PubMed  Google Scholar 

  211. Sidoli S, Garcia BA (2017) Middle-down proteomics: a still unexploited resource for chromatin biology. Expert Rev Proteomics 14(7):617–626. https://doi.org/10.1080/14789450.2017.1345632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Zhou M, Paša-Tolić L, Stenoien DL (2017) Profiling of histone post-translational modifications in mouse brain with high-resolution top-down mass spectrometry. J Proteome Res 16(2):599–608. https://doi.org/10.1021/acs.jproteome.6b00694

    Article  CAS  PubMed  Google Scholar 

  213. Leney AC, El Atmioui D, Wu W et al (2017) Elucidating crosstalk mechanisms between phosphorylation and O-GlcNAcylation. Proc Natl Acad Sci U S A 114(35):E7255–E7261. https://doi.org/10.1073/pnas.1620529114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Hasan MM, Khatun MS, Mollah MNH et al (2017) A systematic identification of species-specific protein succinylation sites using joint element features information. Int J Nanomedicine 126:303–6315. https://doi.org/10.2147/IJN.S140875

    Article  Google Scholar 

  215. Liu Z, Dong W, Jiang W et al (2019) csDMA: an improved bioinformatics tool for identifying DNA 6 mA modifications via Chou’s 5-step rule. Sci Rep 9(1):1–9. https://doi.org/10.1038/s41598-019-49,430-4

    Article  Google Scholar 

  216. Roitinger E, Hofer M, Köcher T et al (2015) Quantitative phosphoproteomics of the ataxia telangiectasia-mutated (ATM) and ataxia telangiectasia-mutated and Rad3-related (ATR) dependent DNA damage response in Arabidopsis thaliana. Mol Cell Proteomics 14(3):556–571. https://doi.org/10.1074/mcp.M114.040352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. McConnell EW, Berg P, Westlake TJ et al (2019) Proteome-wide analysis of cysteine reactivity during effector-triggered immunity. Plant Physiol 179(4):1248–1264. https://doi.org/10.1104/pp.18.01194

    Article  CAS  PubMed  Google Scholar 

  218. Huang J, Willems P, Wei B et al (2019) Mining for protein S-sulfenylation in Arabidopsis uncovers redox-sensitive sites. Proc Natl Acad Sci U S A 116(42):20256–20261. https://doi.org/10.1073/pnas.1906768116

    Article  CAS  Google Scholar 

  219. Hu J, Huang X, Chen L et al (2015) Site-specific nitrosoproteomic identification of endogenously S-nitrosylated proteins in Arabidopsis. Plant Physiol 167(4):1731–1746. https://doi.org/10.1104/pp.15.00026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Zielinska DF, Gnad F, Schropp K et al (2012) Mapping N-glycosylation sites across seven evolutionarily distant species reveals a divergent substrate proteome despite a common core machinery. Mol Cell 46(4):542–548. https://doi.org/10.1016/j.molcel.2012.04.031

    Article  CAS  PubMed  Google Scholar 

  221. Walton A, Stes E, Cybulski N et al (2016) It’s time for some “site”-seeing: novel tools to monitor the ubiquitin landscape in Arabidopsis thaliana. Plant Cell 28(1):6–16. https://doi.org/10.1105/tpc.15.00878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Hartl M, Füßl M, Boersema PJ et al (2017) Lysine acetylome profiling uncovers novel histone deacetylase substrate proteins in Arabidopsis. Mol Syst Biol 13(10):949. https://doi.org/10.15252/msb.20177819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Liang Q, Geng Q, Jiang L et al (2020) Protein methylome analysis in Arabidopsis reveals regulation in RNA-related processes. J Proteomics 213:103601. https://doi.org/10.1016/j.jprot.2019.103601

    Article  CAS  PubMed  Google Scholar 

  224. Huang J, Wu Z, Zhang X (2020) Short-term mild temperature-stress-induced alterations in the C. elegans phosphoproteome. Int J Mol Sci 21(17):6409. https://doi.org/10.3390/ijms21176409

    Article  CAS  PubMed Central  Google Scholar 

  225. Wang H, Gau B, Slade WO et al (2014) The global phosphoproteome of chlamydomonas reinhardtii reveals complex organellar phosphorylation in the flagella and thylakoid membrane. Mol Cell Proteomics 13(9):2337–2353. https://doi.org/10.1074/mcp.M114.038281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Morisse S, Zaffagnini M, Gao XH et al (2014) Insight into protein S-nitrosylation in Chlamydomonas reinhardtii. Antioxid Redox Signal 21(9):1271–1284. https://doi.org/10.1089/ars.2013.5632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Schulze S, Oltmanns A, Machnik N et al (2018) N-glycoproteomic characterization of mannosidase and xylosyltransferase mutant strains of Chlamydomonas reinhardtii. Plant Physiol 176(3):1952–1964. https://doi.org/10.1104/pp.17.01450

    Article  CAS  PubMed  Google Scholar 

  228. Yan J, Long Y, Zhou T et al (2020) Dynamic phosphoproteome profiling of zebrafish embryonic fibroblasts during cold acclimation. Proteomics 20(2):1900257. https://doi.org/10.1002/pmic.201900257

    Article  CAS  Google Scholar 

  229. Kwon OK, Kim S, Lee S (2016) Global proteomic analysis of lysine acetylation in zebrafish (Danio rerio) embryos. Electrophoresis 37(23–24):3137–3145. https://doi.org/10.1002/elps.201600210

    Article  CAS  PubMed  Google Scholar 

  230. Bo Zhai JV, Beausoleil SA, Mintseris J et al (2008) Phosphoproteome analysis of drosophila melanogaster embryos. J Proteome Res 7(4):1675–1682. https://doi.org/10.1021/pr700696a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Menger KE, James AM, Cochemé HM et al (2015) Fasting, but not aging, dramatically alters the redox status of cysteine residues on proteins in Drosophila melanogaster. Cell Rep 11(12):1856–1865. https://doi.org/10.1016/j.celrep.2015.05.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Sap KA, Bezstarosti K, Dekkers DHW et al (2017) Quantitative proteomics reveals extensive changes in the ubiquitinome after perturbation of the proteasome by targeted dsRNA-mediated subunit knockdown in drosophila. J Proteome Res 16(8):2848–2862. https://doi.org/10.1021/acs.jproteome.7b00156

    Article  CAS  PubMed  Google Scholar 

  233. Weinert BT, Wagner SA, Horn H et al (2011) Proteome-wide mapping of the Drosophila acetylome demonstrates a high degree of conservation of lysine acetylation. Sci Signal 4(183):ra48. https://doi.org/10.1126/scisignal.2001902

    Article  CAS  PubMed  Google Scholar 

  234. Semanjski M, Germain E, Bratl K et al (2018) The kinases HipA and HipA7 phosphorylate different substrate pools in Escherichia coli to promote multidrug tolerance. Sci Signal 11(547):5750. https://doi.org/10.1126/scisignal.aat5750

    Article  CAS  Google Scholar 

  235. Shakir S, Vinh J, Chiappetta G (2017) Quantitative analysis of the cysteine redoxome by iodoacetyl tandem mass tags. Anal Bioanal Chem 409(15):3821–3830. https://doi.org/10.1007/s00216-017-0326-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Weinert BT, Iesmantavicius V, Wagner SA et al (2013) Acetyl-phosphate is a critical determinant of lysine acetylation in E. coli. Mol Cell 51(2):265–272. https://doi.org/10.1016/j.molcel.2013.06.003

    Article  CAS  PubMed  Google Scholar 

  237. Zhang M, Xu J-Y, Hu H et al (2018) Systematic proteomic analysis of protein methylation in prokaryotes and eukaryotes revealed distinct substrate specificity. Proteomics 18(1):1700300. https://doi.org/10.1002/pmic.201700300

    Article  CAS  Google Scholar 

  238. Sharma K, D’Souza RCJ, Tyanova S et al (2014) Ultradeep human phosphoproteome reveals a distinct regulatory nature of Tyr and Ser/Thr-based signaling. Cell Rep 8(5):1583–1594. https://doi.org/10.1016/j.celrep.2014.07.036

    Article  CAS  PubMed  Google Scholar 

  239. Huang H, Petersen MH, Ibañez-Vea M et al (2016) Simultaneous enrichment of cysteine containing peptides and phosphopeptides using a cysteine-specific phosphonate adaptable tag (CysPAT) in combination with titanium dioxide (TiO2) chromatography. Mol Cell Proteomics 15(10):3282–3296. https://doi.org/10.1074/mcp.M115.054551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Mnatsakanyan R, Markoutsa S, Walbrunn K et al (2019) Proteome-wide detection of S-nitrosylation targets and motifs using bioorthogonal cleavable-linker-based enrichment and switch technique. Nat Commun 10(1):1–12. https://doi.org/10.1038/s41467-019-10,182-4

    Article  CAS  Google Scholar 

  241. Zhu J, Sun Z, Cheng K et al (2014) Comprehensive mapping of protein N-glycosylation in human liver by combining hydrophilic interaction chromatography and hydrazide chemistry. J Proteome Res 13(3):1713–1721. https://doi.org/10.1021/pr401200h

    Article  CAS  PubMed  Google Scholar 

  242. Akimov V, Barrio-Hernandez I, Hansen SVF et al (2018) Ubisite approach for comprehensive mapping of lysine and n-terminal ubiquitination sites. Nat Struct Mol Biol 25(7):631–640. https://doi.org/10.1038/s41594-018-0084-y

    Article  CAS  PubMed  Google Scholar 

  243. Schölz C, Weinert BT, Wagner SA et al (2015) Acetylation site specificities of lysine deacetylase inhibitors in human cells. Nat Biotechnol 33(4):415–425. https://doi.org/10.1038/nbt.3130

    Article  CAS  PubMed  Google Scholar 

  244. Larsen SC, Sylvestersen KB, Mund A et al (2016) Proteome-wide analysis of arginine monomethylation reveals widespread occurrence in human cells. Sci Signal 9(443):rs9. https://doi.org/10.1126/scisignal.aaf7329

    Article  CAS  PubMed  Google Scholar 

  245. Wang Z, Ma J, Miyoshi C et al (2018) Quantitative phosphoproteomic analysis of the molecular substrates of sleep need. Nature 558(7710):435–439. https://doi.org/10.1038/s41586-018-0218-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Wang J, Choi H, Chung NC et al (2018) Integrated dissection of cysteine oxidative post-translational modification proteome during cardiac hypertrophy. J Proteome Res 17(12):4243–4257. https://doi.org/10.1021/acs.jproteome.8b00372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Zareba-Koziol M, Bartkowiak-Kaczmarek A, Figiel I et al (2019) Stress-induced changes in the S-palmitoylation and S-nitrosylation of synaptic proteins. Mol Cell Proteomics 18(10):1916–1938. https://doi.org/10.1074/mcp.RA119.001581

    Article  PubMed  PubMed Central  Google Scholar 

  248. Fang P, Wang XJ, Xue Y et al (2016) In-depth mapping of the mouse brain N-glycoproteome reveals widespread N-glycosylation of diverse brain proteins. Oncotarget 7(25):38796–38809. https://doi.org/10.18632/oncotarget.9737

    Article  PubMed  PubMed Central  Google Scholar 

  249. Rardin MJ, Newman JC, Held JM et al (2013) Label-free quantitative proteomics of the lysine acetylome in mitochondria identifies substrates of SIRT3 in metabolic pathways. Proc Natl Acad Sci U S A 110(16):6601–6606. https://doi.org/10.1073/pnas.1302961110

    Article  PubMed  PubMed Central  Google Scholar 

  250. Li J, Paulo JA, Nusinow DP et al (2019) Investigation of proteomic and phosphoproteomic responses to signaling network perturbations reveals functional pathway organizations in yeast. Cell Rep 29(7):2092–2104.e4. https://doi.org/10.1016/j.celrep.2019.10.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Neubert P, Halim A, Zauser M et al (2016) Mapping the O-mannose glycoproteome in saccharomyces cerevisiae. Mol Cell Proteomics 15(4):1323–1337. https://doi.org/10.1074/mcp.M115.057505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Iesmantavicius V, Weinert BT, Choudhary C (2014) Convergence of ubiquitylation and phosphorylation signaling in rapamycin-treated yeast cells. Mol Cell Proteomics 13(8):1979–1992. https://doi.org/10.1074/mcp.O113.035683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Henriksen P, Wagner SA, Weinert BT et al (2012) Proteome-wide analysis of lysine acetylation suggests its broad regulatory scope in saccharomyces cerevisiae. Mol Cell Proteomics 11(11):1510–1522. https://doi.org/10.1074/mcp.M112.017251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Zhang Y, Pan Y, Liu W et al (2016) In vivo protein allylation to capture protein methylation candidates. Chem Commun 52(40):6689–6692. https://doi.org/10.1039/c6cc02386j

    Article  CAS  Google Scholar 

  255. Perez-Riverol Y, Csordas A, Bai J et al (2019) The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Res 47(D1):D442–D450. https://doi.org/10.1093/nar/gky1106

    Article  CAS  PubMed  Google Scholar 

  256. Zhang Z, Tan M, Xie Z et al (2011) Identification of lysine succinylation as a new post-translational modification. Nat Chem Biol 7(1):58–63. https://doi.org/10.1038/nchembio.495

    Article  CAS  PubMed  Google Scholar 

  257. Newton K, Matsumoto ML, Wertz IE et al (2008) Ubiquitin chain editing revealed by polyubiquitin linkage-specific antibodies. Cell 134(4):668–678. https://doi.org/10.1016/j.cell.2008.07.039

    Article  CAS  PubMed  Google Scholar 

  258. Ghosh R, Gilda JE, Gomes AV (2014) The necessity of and strategies for improving confidence in the accuracy of western blots. Expert Rev Proteomics 11(5):549–560. https://doi.org/10.1586/14789450.2014.939635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Pillai-Kastoori L, Schutz-Geschwender AR, Harford JA (2020) A systematic approach to quantitative Western blot analysis. Anal Biochem 593(15):113608. https://doi.org/10.1016/j.ab.2020.113608

    Article  CAS  PubMed  Google Scholar 

  260. Yu Y, Anjum R, Kubota K et al (2009) A site-specific, multiplexed kinase activity assay using stable-isotope dilution and high-resolution mass spectrometry. Proc Natl Acad Sci U S A 106(28):11606–11611. https://doi.org/10.1073/pnas.0905165106

    Article  PubMed  PubMed Central  Google Scholar 

  261. Gillette MA, Carr SA (2013) Quantitative analysis of peptides and proteins in biomedicine by targeted mass spectrometry. Nat Methods 10(1):28–34. https://doi.org/10.1038/NMETH.2309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. Morris M, Knudsen GM, Maeda S et al (2015) Tau post-translational modifications in wild-type and human amyloid precursor protein transgenic mice. Nat Neurosci 18(8):1183–1189. https://doi.org/10.1038/nn.4067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. Shi T, Song E, Nie S et al (2016) Advances in targeted proteomics and applications to biomedical research. Proteomics 16(15–16):2160–2182. https://doi.org/10.1002/pmic.201500449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  264. Ebhardt HA, Root A, Sander C et al (2015) Applications of targeted proteomics in systems biology and translational medicine. Proteomics 15(18):3193–3208. https://doi.org/10.1002/pmic.201500004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  265. Zhao Y, Brasier AR (2013) Applications of selected reaction monitoring (SRM)-mass spectrometry (MS) for quantitative measurement of signaling pathways. Methods 61(3):313–322. https://doi.org/10.1016/j.ymeth.2013.02.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  266. Gallien S, Duriez E, Crone C et al (2012) Targeted proteomic quantification on quadrupole-orbitrap mass spectrometer. Mol Cell Proteomics 11(12):1709–1723. https://doi.org/10.1074/mcp.O112.019802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  267. Ronsein GE, Pamir N, von Haller PD et al (2015) Parallel reaction monitoring (PRM) and selected reaction monitoring (SRM) exhibit comparable linearity, dynamic range and precision for targeted quantitative HDL proteomics. J Proteomics 113:388–399. https://doi.org/10.1016/j.jprot.2014.10.017

    Article  CAS  PubMed  Google Scholar 

  268. Rauniyar N (2015) Parallel reaction monitoring: a targeted experiment performed using high resolution and high mass accuracy mass spectrometry. Int J Mol Sci 16(12):28566–28581. https://doi.org/10.3390/ijms161226120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  269. Schilling B, MacLean B, Held JM et al (2015) Multiplexed, scheduled, high-resolution parallel reaction monitoring on a full scan QqTOF instrument with integrated data-dependent and targeted mass spectrometric workflows. Anal Chem 87(20):10222–10229. https://doi.org/10.1021/acs.analchem.5b02983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  270. Peterson AC, Russell JD, Bailey DJ et al (2012) Parallel reaction monitoring for high resolution and high mass accuracy quantitative, targeted proteomics. Mol Cell Proteomics 11(11):1475–1488. https://doi.org/10.1074/mcp.O112.020131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  271. Xu G, Jaffrey SR (2013) Proteomic identification of protein ubiquitination events. Biotechnol Genet Eng Rev 29(1):73–109. https://doi.org/10.1080/02648725.2013.801232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  272. Blom N, Sicheritz-Pontén T, Gupta R et al (2004) Prediction of post-translational glycosylation and phosphorylation of proteins from the amino acid sequence. Proteomics 4(6):1633–1649. https://doi.org/10.1002/pmic.200300771

    Article  CAS  PubMed  Google Scholar 

  273. Unwin RD, Griffiths JR, Whetton AD (2010) Simultaneous analysis of relative protein expression levels across multiple samples using iTRAQ isobaric tags with 2D nano LC-MS/MS. Nat Protoc 51:1574–1582. https://doi.org/10.1038/nprot.2010.123

    Article  CAS  Google Scholar 

  274. Thompson A, Wölmer N, Koncarevic S et al (2019) TMTpro: design, synthesis, and initial evaluation of a proline-based isobaric 16-Plex Tandem Mass Tag Reagent Set. Anal Chem 91(24):15941–15950. https://doi.org/10.1021/acs.analchem.9b04474

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a National Science Foundation CAREER award (MCB-1552522) awarded to L.M.H. We thank Prof. Dukka KC, Amanda Smythers, and Patric Sadecki for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leslie M. Hicks .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Iannetta, A.A., Hicks, L.M. (2022). Maximizing Depth of PTM Coverage: Generating Robust MS Datasets for Computational Prediction Modeling. In: KC, D.B. (eds) Computational Methods for Predicting Post-Translational Modification Sites. Methods in Molecular Biology, vol 2499. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2317-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2317-6_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2316-9

  • Online ISBN: 978-1-0716-2317-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics