Skip to main content
Book cover

Mitochondria pp 173–184Cite as

Mitochondrial Toxicity of Organic Arsenicals

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2497))

Abstract

Arsenic is either notorious toxicant or miracle cure for acute promyelocytic leukemia and several other diseases. It interacts with mitochondria directly or indirectly, by interacting with mitochondrial enzymes, such as respiratory chain complexes and tricarboxylic acid cycle proteins, or affecting mitochondrial homeostasis via ROS or mitochondrial outer membrane permeabilization. Given the ubiquitous presence of mitochondria and indispensable role in cellular metabolism, arsenical-mitochondrial interactions may manifest clinical importance by revealing mechanism of disease curation, preventing severe side effects, and foreseeing potential health issues. Here, we described the interaction between isolated mitochondria and arsenicals.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Sharma VK, Sohn M (2009) Aquatic arsenic: toxicity, speciation, transformations, and remediation. Environ Int 35(4):743–759. https://doi.org/10.1016/j.envint.2009.01.005

    Article  CAS  Google Scholar 

  2. Tam LM, Price NE, Wang Y (2020) Molecular mechanisms of arsenic-induced disruption of DNA repair. Chem Res Toxicol 33(3):709–726. https://doi.org/10.1021/acs.chemrestox.9b00464

    Article  CAS  Google Scholar 

  3. Mandal BK, Suzuki KT (2002) Arsenic round the world: a review. Talanta 58(1):201–235. https://doi.org/10.1016/S0039-9140(02)00268-0

    Article  CAS  Google Scholar 

  4. Taylor V, Goodale B, Raab A, Schwerdtle T, Reimer K, Conklin S, Karagas MR, Francesconi KA (2017) Human exposure to organic arsenic species from seafood. Sci Total Environ 580:266–282. https://doi.org/10.1016/j.scitotenv.2016.12.113

    Article  CAS  Google Scholar 

  5. Ali W, Zhang H, Junaid M, Mao K, Xu N, Chang C, Rasool A, Wajahat Aslam M, Ali J, Yang Z (2020) Insights into the mechanisms of arsenic-selenium interactions and the associated toxicity in plants, animals, and humans: a critical review. Crit Rev Environ Sci Technol 51(7):704–750. https://doi.org/10.1080/10643389.2020.1740042

  6. Druwe IL, Vaillancourt RR (2010) Influence of arsenate and arsenite on signal transduction pathways: an update. Arch Toxicol 84(8):585–596. https://doi.org/10.1007/s00204-010-0554-4

    Article  CAS  Google Scholar 

  7. Abernathy CO, Liu YP, Longfellow D, Aposhian HV, Beck B, Fowler B, Goyer R, Menzer R, Rossman T, Thompson C, Waalkes M (1999) Arsenic: health effects, mechanisms of actions, and research issues. Environ Health Perspect 107(7):593–597. https://doi.org/10.2307/3434403

    Article  CAS  Google Scholar 

  8. Kumagai Y, Sumi D (2007) Arsenic: signal transduction, transcription factor, and biotransformation involved in cellular response and toxicity. Annu Rev Pharmacol Toxicol 47(1):243–262. https://doi.org/10.1146/annurev.pharmtox.47.120505.105144

    Article  CAS  Google Scholar 

  9. Zhu J, Chen Z, Lallemand-Breitenbach V, de The H (2002) How acute promyelocytic leukaemia revived arsenic. Nat Rev Cancer 2(9):705–714. https://doi.org/10.1038/nrc887

    Article  CAS  Google Scholar 

  10. Diaz Z, Mann KK, Marcoux S, Kourelis M, Colombo M, Komarnitsky PB, Miller WH Jr (2008) A novel arsenical has antitumor activity toward As2O3-resistant and MRP1//ABCC1-overexpressing cell lines. Leukemia 22(10):1853–1863. https://doi.org/10.1038/leu.2008.328

    Article  CAS  Google Scholar 

  11. Noguera NI, Piredda ML, Taulli R, Catalano G, Angelini G, Gaur G, Nervi C, Voso MT, Lunardi A, Pandolfi PP, Lo-Coco F (2016) PML/RARa inhibits PTEN expression in hematopoietic cells by competing with PU.1 transcriptional activity. Oncotarget 7(41):66386–66397. https://doi.org/10.18632/oncotarget.11964

    Article  Google Scholar 

  12. Gibaud S, Jaouen G (2010) Arsenic-based drugs: from fowler’s solution to modern anticancer chemotherapy. In: Jaouen G, Metzler-Nolte N (eds) Medicinal organometallic chemistry. Springer, Berlin, pp 1–20. https://doi.org/10.1007/978-3-642-13185-1_1

    Chapter  Google Scholar 

  13. Yang Z, Kang DH, Lee H, Shin J, Yan W, Rathore B, Kim H-R, Kim SJ, Singh H, Liu L, Qu J, Kang C, Kim JS (2018) A fluorescent probe for stimulated emission depletion super-resolution imaging of vicinal-dithiol-proteins on mitochondrial membrane. Bioconjug Chem 29(4):1446–1453. https://doi.org/10.1021/acs.bioconjchem.8b00128

    Article  CAS  Google Scholar 

  14. Fan XY, Liu YJ, Chen K, Jiang FL, Hu YJ, Liu D, Liu Y, Ge YS (2018) Organic arsenicals target thioredoxin reductase followed by oxidative stress and mitochondrial dysfunction resulting in apoptosis. Eur J Med Chem 143:1090–1102. https://doi.org/10.1016/j.ejmech.2017.05.022

    Article  CAS  Google Scholar 

  15. Liu Y, Duan D, Yao J, Zhang B, Peng S, Ma H, Song Y, Fang J (2014) Dithiaarsanes induce oxidative stress-mediated apoptosis in HL-60 cells by selectively targeting thioredoxin reductase. J Med Chem 57(12):5203–5211. https://doi.org/10.1021/jm500221p

    Article  CAS  Google Scholar 

  16. Elliott MA, Ford SJ, Prasad E, Dick LJ, Farmer H, Hogg PJ, Halbert GW (2012) Pharmaceutical development of the novel arsenical based cancer therapeutic GSAO for phase I clinical trial. Int J Pharm 426(1):67–75. https://doi.org/10.1016/j.ijpharm.2012.01.024

    Article  CAS  Google Scholar 

  17. Park D, Chiu J, Perrone GG, Dilda PJ, Hogg PJ (2012) The tumour metabolism inhibitors GSAO and PENAO react with cysteines 57 and 257 of mitochondrial adenine nucleotide translocase. Cancer Cell Int 12(1):11–16. https://doi.org/10.1186/1475-2867-12-11

    Article  CAS  Google Scholar 

  18. Don AS, Kisker O, Dilda P, Donoghue N, Zhao X, Decollogne S, Creighton B, Flynn E, Folkman J, Hogg PJ (2003) A peptide trivalent arsenical inhibits tumor angiogenesis by perturbing mitochondrial function in angiogenic endothelial cells. Cancer Cell 3(5):497–509. https://doi.org/10.1016/S1535-6108(03)00109-0

    Article  CAS  Google Scholar 

  19. Matulis SM, Morales AA, Yehiayan L, Croutch C, Gutman D, Cai Y, Lee KP, Boise LH (2009) Darinaparsin induces a unique cellular response and is active in an arsenic trioxide-resistant myeloma cell line. Mol Cancer Ther 8(5):1197–1206. https://doi.org/10.1158/1535-7163.MCT-08-1072

    Article  CAS  Google Scholar 

  20. Fan XY, Liu YJ, Cai YM, Wang AD, Xia YZ, Hu YJ, Jiang FL, Liu Y (2019) A mitochondria-targeted organic arsenical accelerates mitochondrial metabolic disorder and function injury. Bioorg Med Chem 27(5):760–768. https://doi.org/10.1016/j.bmc.2019.01.008

    Article  CAS  Google Scholar 

  21. Liu YJ, Fan XY, Zhang DD, Xia YZ, Hu YJ, Jiang FL, Zhou FL, Liu Y (2020) Dual inhibition of pyruvate dehydrogenase complex and respiratory chain complex induces apoptosis by a mitochondria-targeted fluorescent organic arsenical in vitro and in vivo. ChemMedChem 15(6):552–558. https://doi.org/10.1002/cmdc.201900686

    Article  CAS  Google Scholar 

  22. Liu YJ, Fan XY, Wang AD, Xia YZ, Fu WR, Liu JY, Jiang FL, Liu Y (2019) LDHA suppression altering metabolism inhibits tumor progress by an organic arsenical. Int J Mol Sci 20(24):6239–6256. https://doi.org/10.3390/ijms20246239

    Article  CAS  Google Scholar 

  23. Zhang D, Liu Y, Luo Z, Chen Y, Xu A, Liang Y, Wu B, Tong X, Liu X, Shen H, Liu L, Wei Y, Zhou H, Liu Y, Zhou F (2019) The novel thioredoxin reductase inhibitor A-Z2 triggers intrinsic apoptosis and shows efficacy in the treatment of acute myeloid leukemia. Free Radic Biol Med 146:275–286. https://doi.org/10.1016/j.freeradbiomed.2019.11.013

    Article  CAS  Google Scholar 

  24. Frazier AE, Thorburn DR, Compton AG (2019) Mitochondrial energy generation disorders: genes, mechanisms, and clues to pathology. J Biol Chem 294(14):5386–5395. https://doi.org/10.1074/jbc.R117.809194

    Article  CAS  Google Scholar 

  25. Wallace DC, Fan W, Procaccio V (2010) Mitochondrial energetics and therapeutics. Annu Rev Pathol Mech Dis 5(1):297–348. https://doi.org/10.1146/annurev.pathol.4.110807.092314

    Article  CAS  Google Scholar 

  26. Eisenberg L, Eisenberg-Bord M, Eisenberg-Lerner A, Sagi-Eisenberg R (2020) Metabolic alterations in the tumor microenvironment and their role in oncogenesis. Cancer Lett 484:65–71. https://doi.org/10.1016/j.canlet.2020.04.016

    Article  CAS  Google Scholar 

  27. Chi X, Wang Y, Heng BC, Wei Y, Guo Y, Zhang X, Zhao H, Yin Y, Deng X (2020) Mitochondria transfer enhances proliferation, migration, and osteogenic differentiation of bone marrow mesenchymal stem cell and promotes bone defect healing. Stem Cell Res Ther 11(1):245–260. https://doi.org/10.1186/s13287-020-01704-9

    Article  CAS  Google Scholar 

  28. Bock FJ, Tait SWG (2020) Mitochondria as multifaceted regulators of cell death. Nat Rev Mol Cell Biol 21(2):85–100. https://doi.org/10.1038/s41580-019-0173-8

    Article  CAS  Google Scholar 

  29. Weidling IW, Swerdlow RH (2020) Mitochondria in Alzheimer’s disease and their potential role in Alzheimer’s proteostasis. Exp Neurol 330:113321–113328. https://doi.org/10.1016/j.expneurol.2020.113321

    Article  CAS  Google Scholar 

  30. Martínez-Reyes I, Cardona LR, Kong H, Vasan K, McElroy GS, Werner M, Kihshen H, Reczek CR, Weinberg SE, Gao P, Steinert EM, Piseaux R, Budinger GRS, Chandel NS (2020) Mitochondrial ubiquinol oxidation is necessary for tumour growth. Nature 585:288–292. https://doi.org/10.1038/s41586-020-2475-6

    Article  CAS  Google Scholar 

  31. Jovanovski A, Pergolizzi B, Pironi L, Stanga S, Panuzzo C, Fava C, Cilloni D (2020) Mitochondria: a galaxy in the hematopoietic and leukemic stem cell universe. Int J Mol Sci 21(11):3928–3954. https://doi.org/10.3390/ijms21113928

    Article  CAS  Google Scholar 

  32. Jimenez-Blasco D, Busquets-Garcia A, Hebert-Chatelain E, Serrat R, Vicente-Gutierrez C, Ioannidou C, Gómez-Sotres P, Lopez-Fabuel I, Resch-Beusher M, Resel E, Arnouil D, Saraswat D, Varilh M, Cannich A, Julio-Kalajzic F, Bonilla-Del Río I, Almeida A, Puente N, Achicallende S, Lopez-Rodriguez M-L, Jollé C, Déglon N, Pellerin L, Josephine C, Bonvento G, Panatier A, Lutz B, Piazza P-V, Guzmán M, Bellocchio L, Bouzier-Sore A-K, Grandes P, Bolaños JP, Marsicano G (2020) Glucose metabolism links astroglial mitochondria to cannabinoid effects. Nature 583:603–608. https://doi.org/10.1038/s41586-020-2470-y

    Article  CAS  Google Scholar 

  33. Picard M, Wallace DC, Burelle Y (2016) The rise of mitochondria in medicine. Mitochondrion 30:105–116. https://doi.org/10.1016/j.mito.2016.07.003

    Article  CAS  Google Scholar 

  34. Vuda M, Kamath A (2016) Drug induced mitochondrial dysfunction: mechanisms and adverse clinical consequences. Mitochondrion 31:63–74. https://doi.org/10.1016/j.mito.2016.10.005

    Article  CAS  Google Scholar 

  35. Feng Q, Kornmann B (2018) Mechanical forces on cellular organelles. J Cell Sci 131(21):218479–218487. https://doi.org/10.1242/jcs.218479

    Article  CAS  Google Scholar 

  36. Zhang L, Trushin S, Christensen TA, Bachmeier BV, Gateno B, Schroeder A, Yao J, Itoh K, Sesaki H, Poon WW, Gylys KH, Patterson ER, Parisi JE, Diaz Brinton R, Salisbury JL, Trushina E (2016) Altered brain energetics induces mitochondrial fission arrest in Alzheimer’s disease. Sci Rep 6(1):18725–18736. https://doi.org/10.1038/srep18725

    Article  CAS  Google Scholar 

  37. Chen G, Li W, Kepp O, Zhu Y, Ma K, Chen Q (2020) Mitophagy, mitochondrial homeostasis, and cell fate. Front Cell Dev Biol 8:467–480. https://doi.org/10.3389/fcell.2020.00467

    Article  Google Scholar 

  38. Han S, Jeong YY, Sheshadri P, Su X, Cai Q (2020) Mitophagy regulates integrity of mitochondria at synapses and is critical for synaptic maintenance. EMBO Rep 21(9):e49801. https://doi.org/10.15252/embr.201949801

    Article  CAS  Google Scholar 

  39. Cogliati S, Enriquez JA, Scorrano L (2016) Mitochondrial cristae: where beauty meets functionality. Trends Biochem Sci 41(3):261–273. https://doi.org/10.1016/j.tibs.2016.01.001

    Article  CAS  Google Scholar 

  40. Ru-Zhou Z, Jiang S, Zhang L, Zhi-Bin Y (2019) Mitochondrial electron transport chain, ROS generation and uncoupling (Review). Int J Mol Med 44(2):3–15

    Google Scholar 

  41. Dalla Pozza E, Dando I, Pacchiana R, Liboi E, Scupoli MT, Donadelli M, Palmieri M (2020) Regulation of succinate dehydrogenase and role of succinate in cancer. Semin Cell Dev Biol 98:4–14. https://doi.org/10.1016/j.semcdb.2019.04.013

    Article  CAS  Google Scholar 

  42. Pfanner N, Warscheid B, Wiedemann N (2019) Mitochondrial proteins: from biogenesis to functional networks. Nat Rev Mol Cell Biol 20(5):267–284. https://doi.org/10.1038/s41580-018-0092-0

    Article  CAS  Google Scholar 

  43. Schgger H, Link TA, Engel WD, Von JG (1986) Isolation of the eleven protein subunits of the bc1 complex from beef heart. Methods Enzymol 126(126):224–237. https://doi.org/10.1016/S0076-6879(86)26024-3

    Article  Google Scholar 

  44. Kadenbach B, Hüttemann M (2015) The subunit composition and function of mammalian cytochrome c oxidase. Mitochondrion 24(1):64–76. https://doi.org/10.1016/j.mito.2015.07.002

    Article  CAS  Google Scholar 

  45. Forrest MD (2015) Why cancer cells have a more hyperpolarised mitochondrial membrane potential and emergent prospects for therapy. bioRxiv:025197. https://doi.org/10.1101/025197

  46. Kueh Hao Y, Niethammer P, Mitchison Timothy J (2013) Maintenance of mitochondrial oxygen homeostasis by cosubstrate compensation. Biophys J 104(6):1338–1348. https://doi.org/10.1016/j.bpj.2013.01.030

    Article  CAS  Google Scholar 

  47. Waypa GB, Marks JD, Guzy R, Mungai PT, Schriewer J, Dokic D, Schumacker PT (2010) Hypoxia triggers subcellular compartmental redox signaling in vascular smooth muscle cells. Circ Res 106(3):526–535. https://doi.org/10.1161/CIRCRESAHA.109.206334

    Article  CAS  Google Scholar 

  48. Cho H, Cho Y-Y, Shim MS, Lee JY, Lee HS, Kang HC (2020) Mitochondria-targeted drug delivery in cancers. Biochim Biophys Acta Mol Basis Dis 1866(8):165808–165827. https://doi.org/10.1016/j.bbadis.2020.165808

    Article  CAS  Google Scholar 

  49. Don AS, Hogg PJ (2004) Mitochondria as cancer drug targets. Trends Mol Med 10(8):372–378. https://doi.org/10.1016/j.molmed.2004.06.005

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the financial support of National Natural Science Foundation of China (22073070, 21673166).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Liu, YJ., Liu, Y. (2022). Mitochondrial Toxicity of Organic Arsenicals. In: Tomar, N. (eds) Mitochondria. Methods in Molecular Biology, vol 2497. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2309-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2309-1_11

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2308-4

  • Online ISBN: 978-1-0716-2309-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics