Skip to main content

Text Mining Protocol to Retrieve Significant Drug–Gene Interactions from PubMed Abstracts

  • Protocol
  • First Online:
Biomedical Text Mining

Abstract

Genes and proteins form the basis of all cellular processes and ensure a smooth functioning of the human system. The diseases caused in humans can be either genetic in nature or may be caused due to external factors. Genetic diseases are mainly the result of any anomaly in gene/protein structure or function. This disruption interferes with the normal expression of cellular components. Against external factors, even though the immunogenicity of every individual protects them to a certain extent from infections, they are still susceptible to other disease-causing agents. Understanding the biological pathway/entities that could be targeted by specific drugs is an essential component of drug discovery. The traditional drug target discovery process is time-consuming and practically not feasible. A computational approach could provide speed and efficiency to the method. With the presence of vast biomedical literature, text mining also seems to be an obvious choice which could efficiently aid with other computational methods in identifying drug–gene targets. These could aid in initial stages of reviewing the disease components or can even aid parallel in extracting drug–disease–gene/protein relationships from literature. The present chapter aims at finding drug–gene interactions and how the information could be explored for drug interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Malki MA, Pearson ER (2020) Drug–drug–gene interactions and adverse drug reactions. Pharmacogenomics J 20(3):355–366. https://doi.org/10.1038/s41397-019-0122-0

    Article  CAS  PubMed  Google Scholar 

  2. Zhu S, Bing J, Min X, Lin C, Zeng X (2018) Prediction of drug–gene interaction by using Metapath2vec. Front Genet 9:248. https://doi.org/10.3389/fgene.2018.00248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Liu X, Pan L (2015) Identifying driver nodes in the human signaling network using structural controllability analysis. IEEE/ACM Trans Comput Biol Bioinform 12(2):467–472. https://doi.org/10.1109/tcbb.2014.2360396

    Article  CAS  PubMed  Google Scholar 

  4. Luo Y, Zhao X, Zhou J, Yang J, Zhang Y, Kuang W et al (2017) A network integration approach for drug-target interaction prediction and computational drug repositioning from heterogeneous information. Nat Commun 8(1):573. https://doi.org/10.1038/s41467-017-00680-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zhao X, Chen L, Lu J (2018) A similarity-based method for prediction of drug side effects with heterogeneous information. Math Biosci 306:136–144. https://doi.org/10.1016/j.mbs.2018.09.010

    Article  CAS  PubMed  Google Scholar 

  6. Tiftikci M, Özgür A, He Y, Hur J (2019) Machine learning-based identification and rule-based normalization of adverse drug reactions in drug labels. BMC Bioinformatics 20(21):707. https://doi.org/10.1186/s12859-019-3195-5

    Article  PubMed  PubMed Central  Google Scholar 

  7. Patel L, Shukla T, Huang X, Ussery DW, Wang S (2020) Machine learning methods in drug discovery. Molecules 25(22):5277. https://doi.org/10.3390/molecules25225277

    Article  CAS  PubMed Central  Google Scholar 

  8. Wojtyniak J-G, Selzer D, Schwab M, Lehr T (2021) Physiologically based precision dosing approach for drug-drug-gene interactions: a simvastatin network analysis. Clin Pharmacol Ther 109(1):201–211. https://doi.org/10.1002/cpt.2111

    Article  CAS  PubMed  Google Scholar 

  9. Wei C-H, Kao H-Y, Lu Z (2013) PubTator: a web-based text mining tool for assisting biocuration. Nucleic Acids Res 41(W1):W518–WW22. https://doi.org/10.1093/nar/gkt441

    Article  PubMed  PubMed Central  Google Scholar 

  10. Dorji PW, Wangchuk S, Boonprasert K, Tarasuk M, Na-Bangchang K (2019) Pharmacogenetic relevant polymorphisms of CYP2C9, CYP2C19, CYP2D6, and CYP3A5 in Bhutanese population. Drug Metab Pers Ther 34(4). https://doi.org/10.1515/dmpt-2019-0020

  11. Guin D, Rani J, Singh P, Grover S, Bora S, Talwar P et al (2019) Global text mining and development of pharmacogenomic knowledge resource for precision medicine. Front Pharmacol 10:839. https://doi.org/10.3389/fphar.2019.00839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Garten Y, Tatonetti NP, Altman RB (2010) Improving the prediction of pharmacogenes using text-derived drug-gene relationships. Pac Symp Biocomput 305-14. https://doi.org/10.1142/9789814295291_0033

  13. Zhou J, Fu B-q (2018) The research on gene-disease association based on text-mining of PubMed. BMC Bioinformatics 19:37. https://doi.org/10.1186/s12859-018-2048-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kafkas Ş, Hoehndorf R (2019) Ontology based text mining of gene-phenotype associations: application to candidate gene prediction. Database 2019:baz019. https://doi.org/10.1093/database/baz019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Moumbock AFA, Li J, Mishra P, Gao M, Günther S (2019) Current computational methods for predicting protein interactions of natural products. Comput Struct Biotechnol J 17:1367–1376. https://doi.org/10.1016/j.csbj.2019.08.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sachdev K, Gupta MK (2019) A comprehensive review of feature based methods for drug target interaction prediction. J Biomed Inform 93:103159. https://doi.org/10.1016/j.jbi.2019.103159

    Article  PubMed  Google Scholar 

  17. Whirl-Carrillo M, McDonagh EM, Hebert JM, Gong L, Sangkuhl K, Thorn CF et al (2012) Pharmacogenomics knowledge for personalized medicine. Clin Pharmacol Ther 92(4):414–417. https://doi.org/10.1038/clpt.2012.96

    Article  CAS  PubMed  Google Scholar 

  18. Pakhomov S, McInnes BT, Lamba J, Liu Y, Melton GB, Ghodke Y et al (2012) Using PharmGKB to train text mining approaches for identifying potential gene targets for pharmacogenomic studies. J Biomed Inform 45(5):862–869. https://doi.org/10.1016/j.jbi.2012.04.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ochoa D, Hercules A, Carmona M, Suveges D, Gonzalez-Uriarte A, Malangone C et al (2021) Open targets platform: supporting systematic drug–target identification and prioritisation. Nucleic Acids Res 49(D1):D1302–D1D10. https://doi.org/10.1093/nar/gkaa1027

    Article  CAS  PubMed  Google Scholar 

  20. Ferrero E, Dunham I, Sanseau P (2017) In silico prediction of novel therapeutic targets using gene–disease association data. J Transl Med 15(1):182. https://doi.org/10.1186/s12967-017-1285-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Floris M, Olla S, Schlessinger D, Cucca F (2018) Genetic-driven druggable target identification and validation. Trends Genet 34(7):558–570. https://doi.org/10.1016/j.tig.2018.04.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Denny JC, Collins FS (2021) Precision medicine in 2030—seven ways to transform healthcare. Cell 184(6):1415–1419. https://doi.org/10.1016/j.cell.2021.01.015

    Article  CAS  PubMed  Google Scholar 

  23. Padmanabhan S, Dominiczak AF (2021) Genomics of hypertension: the road to precision medicine. Nat Rev Cardiol 18(4):235–250. https://doi.org/10.1038/s41569-020-00466-4

    Article  CAS  PubMed  Google Scholar 

  24. Kuusisto F, Steill J, Kuang Z, Thomson J, Page D, Stewart R (2017) A simple text mining approach for ranking pairwise associations in biomedical applications. AMIA Jt Summits Transl Sci Proc 2017:166–174

    PubMed  PubMed Central  Google Scholar 

  25. Subramani S, Raja K, Natarajan J (2014) ProNormz – an integrated approach for human proteins and protein kinases normalization. J Biomed Inform 47:131–138. https://doi.org/10.1016/j.jbi.2013.10.003

    Article  PubMed  Google Scholar 

  26. Hu Y, Li Y, Lin H, Yang Z, Cheng L (2012) Integrating various resources for gene name normalization. PLoS One 7(9):e43558-e. https://doi.org/10.1371/journal.pone.0043558

    Article  CAS  Google Scholar 

  27. Koike A, Takagi T (2004) Gene/protein/family name recognition in biomedical literature. Proceedings of HLT-NAACL 2004 workshop: biolink 2004,linking biological literature, ontologies and databases (BioLink 2004). pp 9–16

    Google Scholar 

  28. Hur J, Özgür A, Xiang Z, He Y (2015) Development and application of an interaction network ontology for literature mining of vaccine-associated gene-gene interactions. J Biomed Semantics 6:2. https://doi.org/10.1186/2041-1480-6-2

    Article  PubMed  PubMed Central  Google Scholar 

  29. Raja K, Natarajan J (2018) Mining protein phosphorylation information from biomedical literature using NLP parsing and support vector machines. Comput Methods Prog Biomed 160:57–64. https://doi.org/10.1016/j.cmpb.2018.03.022

    Article  Google Scholar 

  30. Raja K, Patrick M, Elder JT, Tsoi LC (2017) Machine learning workflow to enhance predictions of adverse drug reactions (ADRs) through drug-gene interactions: application to drugs for cutaneous diseases. Sci Rep 7(1):3690. https://doi.org/10.1038/s41598-017-03914-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Alhaj TA, Siraj MM, Zainal A, Elshoush HT, Elhaj F (2016) Feature selection using information gain for improved structural-based alert correlation. PLoS One 11(11):e0166017-e. https://doi.org/10.1371/journal.pone.0166017

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Anand, S., Iyyappan, O.R., Manoharan, S., Anand, D., Jose, M.A., Shanker, R.R. (2022). Text Mining Protocol to Retrieve Significant Drug–Gene Interactions from PubMed Abstracts. In: Raja, K. (eds) Biomedical Text Mining. Methods in Molecular Biology, vol 2496. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2305-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2305-3_2

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2304-6

  • Online ISBN: 978-1-0716-2305-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics