Skip to main content

Assessing Flowering Time Under Different Photoperiods

  • Protocol
  • First Online:
Environmental Responses in Plants

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2494))

Abstract

Flowering time is one of the most important developmental transitions in plants, especially in annuals such as Arabidopsis thaliana. However, flowering is also a critical agronomic trait, as it impacts the level of vegetative biomass produced (e.g., leaves) or the amount of seed (grain) generated. Therefore, uncovering flowering phenotypes would help understand the impact of any regulatory network on the overall plant life cycle, since flowering integrates multiple cues, both environmental (e.g., photoperiod, temperature) and internal (e.g., induction/repression of specific genes, phytohormone accumulation, plant age). Although the photoperiod flowering pathway has been extensively studied, and its gene circuitry characterized in great detail, specific flowering time protocols are mostly accessible to specialized laboratories in this field. In this report, we address this knowledge gap by generating a reproducible, non-expensive, and step-by-step protocol to assess flowering time under different photoperiods. We provide a comprehensive description and highlight the major pitfalls in the process. Moreover, this protocol could be expanded to include temperature changes and thus contribute to assess the impact of both environmental conditions in the plant’s decision to flower.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Koornneef M, Hanhart CJ, van der Veen JH (1991) A genetic and physiological analysis of late flowering mutants in Arabidopsis thaliana. Mol Gen Genet 229:57–66. https://doi.org/10.1007/BF00264213

    Article  CAS  PubMed  Google Scholar 

  2. Martinez-Zapater JM, Somerville CR (1990) Effect of light quality and vernalization on late-flowering mutants of Arabidopsis thaliana. Plant Physiol 92:770–776. https://doi.org/10.1104/pp.92.3.770

    Article  CAS  PubMed  Google Scholar 

  3. Mouradov A, Cremer F, Coupland G (2002) Control of flowering time: interacting pathways as a basis for diversity. Plant Cell 14(Suppl):S111–S130. https://doi.org/10.1105/tpc.001362

    Article  CAS  PubMed  Google Scholar 

  4. Wahl V, Ponnu J, Schlereth A et al (2013) Regulation of flowering by trehalose-6-phosphate signaling in Arabidopsis thaliana. Science 339:704–707. https://doi.org/10.1126/science.1230406

    Article  CAS  PubMed  Google Scholar 

  5. Xu M, Hu T, Zhao J et al (2016) Developmental functions of miR156-regulated SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) genes in Arabidopsis thaliana. PLoS Genet 12:e1006263. https://doi.org/10.1371/journal.pgen.1006263

    Article  CAS  PubMed  Google Scholar 

  6. McClung CR, Lou P, Hermand V, Kim JA (2016) The importance of ambient temperature to growth and the induction of flowering. Front Plant Sci 7:1266. https://doi.org/10.3389/fpls.2016.01266

    Article  CAS  PubMed  Google Scholar 

  7. Jin S, Ahn JH (2021) Regulation of flowering time by ambient temperature: repressing the repressors and activating the activators. New Phytol. https://doi.org/10.1111/nph.17217

  8. Andrés F, Coupland G (2012) The genetic basis of flowering responses to seasonal cues. Nat Rev Genet 13:627–639. https://doi.org/10.1038/nrg3291

    Article  CAS  PubMed  Google Scholar 

  9. Davis SJ (2009) Integrating hormones into the floral-transition pathway of Arabidopsis thaliana. Plant Cell Environ 32:1201–1210. https://doi.org/10.1111/j.1365-3040.2009.01968.x

    Article  CAS  PubMed  Google Scholar 

  10. Conti L (2017) Hormonal control of the floral transition: can one catch them all? Dev Biol 430:288–301. https://doi.org/10.1016/j.ydbio.2017.03.024

    Article  CAS  PubMed  Google Scholar 

  11. Eriksson S, Böhlenius H, Moritz T, Nilsson O (2006) GA4 is the active gibberellin in the regulation of LEAFY transcription and Arabidopsis floral initiation. Plant Cell 18:2172–2181. https://doi.org/10.1105/tpc.106.042317

    Article  CAS  PubMed  Google Scholar 

  12. Plackett ARG, Powers SJ, Fernandez-Garcia N et al (2012) Analysis of the developmental roles of the Arabidopsis gibberellin 20-oxidases demonstrates that GA20ox1, -2, and -3 are the dominant paralogs. Plant Cell 24:941–960. https://doi.org/10.1105/tpc.111.095109

    Article  CAS  PubMed  Google Scholar 

  13. Osnato M, Castillejo C, Matías-Hernández L, Pelaz S (2012) TEMPRANILLO genes link photoperiod and gibberellin pathways to control flowering in Arabidopsis. Nat Commun 3:808. https://doi.org/10.1038/ncomms1810

    Article  CAS  PubMed  Google Scholar 

  14. Wang J-W (2014) Regulation of flowering time by the miR156-mediated age pathway. J Exp Bot 65:4723–4730

    Article  CAS  Google Scholar 

  15. Whittaker C, Dean C (2017) The FLC locus: A platform for discoveries in epigenetics and adaptation. Annu Rev Cell Dev Biol 33:555–575. https://doi.org/10.1146/annurev-cellbio-100616-060546

    Article  CAS  PubMed  Google Scholar 

  16. Kardailsky I, Shukla VK, Ahn JH et al (1999) Activation tagging of the floral inducer FT. Science 286:1962–1965. https://doi.org/10.1126/science.286.5446.1962

    Article  CAS  PubMed  Google Scholar 

  17. Kobayashi Y, Weigel D (2007) Move on up, it’s time for change – mobile signals controlling photoperiod-dependent flowering. Genes Dev 21:2371–2384. https://doi.org/10.1101/gad.1589007

    Article  CAS  PubMed  Google Scholar 

  18. Song YH, Ito S, Imaizumi T (2013) Flowering time regulation: photoperiod- and temperature-sensing in leaves. Trends Plant Sci 18:575–583. https://doi.org/10.1016/j.tplants.2013.05.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Abe M, Kobayashi Y, Yamamoto S et al (2005) FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex. Science 309:1052–1056. https://doi.org/10.1126/science.1115983

    Article  CAS  PubMed  Google Scholar 

  20. Wigge PA, Kim MC, Jaeger KE et al (2005) Integration of spatial and temporal information during floral induction in Arabidopsis. Science 309:1056–1059. https://doi.org/10.1126/science.1114358

    Article  CAS  PubMed  Google Scholar 

  21. Bradley D, Ratcliffe O, Vincent C et al (1997) Inflorescence commitment and architecture in Arabidopsis. Science 275:80–83. https://doi.org/10.1126/science.275.5296.80

    Article  CAS  PubMed  Google Scholar 

  22. Shannon S, Meeks-Wagner DR (1991) A mutation in the Arabidopsis TFL1 gene affects inflorescence meristem development. Plant Cell 3:877–892. https://doi.org/10.1105/tpc.3.9.877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Benlloch R, Berbel A, Serrano-Mislata A, Madueño F (2007) Floral initiation and inflorescence architecture: a comparative view. Ann Bot 100:659–676. https://doi.org/10.1093/aob/mcm146

    Article  PubMed  PubMed Central  Google Scholar 

  24. Parcy F (2005) Flowering: a time for integration. Int J Dev Biol 49:585–593. https://doi.org/10.1387/ijdb.041930fp

    Article  PubMed  Google Scholar 

  25. Fornara F, Panigrahi KCS, Gissot L et al (2009) Arabidopsis DOF transcription factors act redundantly to reduce CONSTANS expression and are essential for a photoperiodic flowering response. Dev Cell 17:75–86. https://doi.org/10.1016/j.devcel.2009.06.015

    Article  CAS  PubMed  Google Scholar 

  26. Kinoshita A, Richter R (2020) Genetic and molecular basis of floral induction in Arabidopsis thaliana. J Exp Bot 71:2490–2504. https://doi.org/10.1093/jxb/eraa057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pouteau S, Albertini C (2009) The significance of bolting and floral transitions as indicators of reproductive phase change in Arabidopsis. J Exp Bot 60:3367–3377. https://doi.org/10.1093/jxb/erp173

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reyes Benlloch .

Editor information

Editors and Affiliations

1 Electronic Supplementary Materials

Supplementary Table 1

Data scoring as leaf number (XLSX 48 kb)

Supplementary Table 2

Data scoring as days until bolting (XLSX 22 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Praena, J., van Veen, E., Henriques, R., Benlloch, R. (2022). Assessing Flowering Time Under Different Photoperiods. In: Duque, P., Szakonyi, D. (eds) Environmental Responses in Plants. Methods in Molecular Biology, vol 2494. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2297-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2297-1_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2296-4

  • Online ISBN: 978-1-0716-2297-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics