Skip to main content

iPSC-Derived Micro-Heart Muscle for Medium-Throughput Pharmacology and Pharmacogenomic Studies

  • Protocol
  • First Online:
Cardiac Tissue Engineering

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2485))

Abstract

Micro-heart muscle arrays enable medium-throughput experiments to model the cardiac response to a variety of environmental and pharmaceutical effects. Here, we describe stem cell culture maintenance, methods for successful cardiac differentiation, and formation of micro-heart muscle arrays for electrophysiology and molecular biology assays.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676. https://doi.org/10.1016/j.cell.2006.07.024

    Article  CAS  PubMed  Google Scholar 

  2. Lian X et al (2013) Directed cardiomyocyte differentiation from human pluripotent stem cells by modulating Wnt/β-catenin signaling under fully defined conditions. Nat Protoc 8(1):162–175. https://doi.org/10.1038/nprot.2012.150

    Article  CAS  PubMed  Google Scholar 

  3. Kattman SJ et al (2011) Stage-specific optimization of activin/nodal and BMP signaling promotes cardiac differentiation of mouse and human pluripotent stem cell lines. Cell Stem Cell 8(2):228–240. https://doi.org/10.1016/j.stem.2010.12.008

    Article  CAS  PubMed  Google Scholar 

  4. Musunuru K et al (2018) Induced pluripotent stem cells for cardiovascular disease modeling and precision medicine: a scientific statement from the american heart association. Circ: Gen Prec Med 11(1):e000043. https://doi.org/10.1161/HCG.0000000000000043

    Article  Google Scholar 

  5. Feric N, Radisic M (2016) Towards adult-like human engineered cardiac tissue: maturing human pluripotent stem cell-derived cardiomyocytes in human engineered cardiac tissues. Adv Drug Deliv Rev 96:110–134. https://doi.org/10.1016/j.addr.2015.04.019

    Article  CAS  PubMed  Google Scholar 

  6. Huebsch N et al (2016) Miniaturized iPS-cell-derived cardiac muscles for physiologically relevant drug response analyses. Sci Rep 6:24726. https://doi.org/10.1038/srep24726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zhao Y et al (2019) A platform for generation of chamber specific cardiac tissues and disease modeling. Cell 176(4):913–927.e18. https://doi.org/10.1016/j.cell.2018.11.042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Boudou T et al (2012) A microfabricated platform to measure and manipulate the mechanics of engineered cardiac microtissues. Tissue Eng Part A 18(9-10):910–919. https://doi.org/10.1089/ten.tea.2011.0341

    Article  CAS  PubMed  Google Scholar 

  9. Thavandiran N et al (2019) Functional arrays of human pluripotent stem cell-derived cardiac microtissues. bioRxiv. https://doi.org/10.1101/566059

  10. Mathur A et al (2015) Human iPSC-based cardiac microphysiological system for drug screening applications. Sci Rep 5:8883. https://doi.org/10.1038/srep08883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Goldfracht I et al (2020) Generating ring-shaped engineered heart tissues from ventricular and atrial human pluripotent stem cell-derived cardiomyocytes. Nat Commun 11(1):1–5. https://doi.org/10.1038/s41467-019-13868-x

    Article  CAS  Google Scholar 

  12. Ronaldson-Bouchard K et al (2018) Advanced maturation of human cardiac tissue grown from pluripotent stem cells. Nature 556(7700):239–243. https://doi.org/10.1038/s41586-018-0016-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Shadrin IY et al (2017) Cardiopatch platform enables maturation and scale-up of human pluripotent stem cell-derived engineered heart tissues. Nat Commun 8(1):1–5. https://doi.org/10.1038/s41467-017-01946-x

    Article  CAS  Google Scholar 

  14. Osutni E et al (2000) Patterning mammalian cells using elastomeric membranes. Langmuir 16(20):7811–7819. https://doi.org/10.1021/la000382m

    Article  CAS  Google Scholar 

  15. Huang YL, Walker AS, Miller EW (2015) A photostable silicon rhodamine platform for optical voltage sensing. J Am Chem Soc 137(33):10767–10776. https://doi.org/10.1021/jacs.5b06644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Huebsch N, Loskill P et al (2015) Automated video-based analysis of contractility and calcium flux in human-induced pluripotent stem cell-derived cardiomyocytes cultured over different spatial scales. Tissue Eng Part C 21(5):467–479. https://doi.org/10.1089/ten.TEC.2014.0283

    Article  CAS  Google Scholar 

  17. Linkert M et al (2010) Metadata matters: access to image data in the real world. J Cell Biol 189(5):777–782. https://doi.org/10.1083/jcb.2010041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Laughner JI et al (2012) Processing and analysis of cardiac optical mapping data obtained with potentiometric dyes. Am J Phys-Heart Circ Phys 303(7):H753–H765. https://doi.org/10.1152/ajpheart.00404.2012

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathaniel Huebsch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Simmons, D.W., Huebsch, N. (2022). iPSC-Derived Micro-Heart Muscle for Medium-Throughput Pharmacology and Pharmacogenomic Studies. In: Coulombe, K.L., Black III, L.D. (eds) Cardiac Tissue Engineering. Methods in Molecular Biology, vol 2485. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2261-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2261-2_8

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2260-5

  • Online ISBN: 978-1-0716-2261-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics