Skip to main content

FRESH 3D Bioprinting a Ventricle-like Cardiac Construct Using Human Stem Cell-Derived Cardiomyocytes

  • Protocol
  • First Online:
Cardiac Tissue Engineering

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2485))

Abstract

Here we describe a method to engineer a contractile ventricle-like chamber composed of human stem cell-derived cardiomyocytes using freeform reversible embedding of suspended hydrogels (FRESH) 3D bioprinting. To do this, we print a support structure using a collagen type I ink and a cellular component using a high-density cell ink supplemented with fibrinogen. The gelation of the collagen and the fibrinogen into fibrin is initiated by pH change and enzymatic crosslinking, respectively. Fabrication of the ventricle-like chamber is completed in three distinct phases: (i) materials preparation, (ii) bioprinting, and (iii) tissue maturation. In this protocol, we describe the method to print the construct from a high-density cell ink composed of human stem cell-derived cardiomyocytes and primary fibroblasts (~300 × 106 cells/mL) using our open-source dual-extruder bioprinter. Additional details are provided on FRESH support preparation, bioink preparation, dual-extruder needle alignment, print parameter selection, and post-processing. This protocol can also be adapted by altering the 3D model design, cell concentration, or cell type to FRESH 3D bioprint other cardiac tissue constructs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Torrent-Guasp F, Ballester M, Buckberg GD et al (2001) Spatial orientation of the ventricular muscle band: physiologic contribution and surgical implications. J Thorac Cardiovasc Surg 122:389–392. https://doi.org/10.1067/mtc.2001.113745

    Article  CAS  PubMed  Google Scholar 

  2. Goldfracht I, Protze S, Shiti A et al (2020) Generating ring-shaped engineered heart tissues from ventricular and atrial human pluripotent stem cell-derived cardiomyocytes. Nat Commun 11:1–15. https://doi.org/10.1038/s41467-019-13868-x

    Article  CAS  Google Scholar 

  3. Hansen A, Eder A, Bönstrup M et al (2010) Development of a drug screening platform based on engineered heart tissue. Circ Res 107:35–44. https://doi.org/10.1161/CIRCRESAHA.109.211458

    Article  CAS  PubMed  Google Scholar 

  4. Zhao Y, Rafatian N, Feric NT et al (2019) A platform for generation of chamber-specific cardiac tissues and disease modeling. Cell 176:913–927.e18. https://doi.org/10.1016/j.cell.2018.11.042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Savoji H, Mohammadi MH, Rafatian N et al (2019) Cardiovascular disease models: a game changing paradigm in drug discovery and screening. Biomaterials 198:3–26. https://doi.org/10.1016/j.biomaterials.2018.09.036

    Article  CAS  PubMed  Google Scholar 

  6. Weinberger F, Mannhardt I, Eschenhagen T (2017) Engineering cardiac muscle tissue: a maturating field of research. Circ Res 120:1487–1500

    Article  CAS  Google Scholar 

  7. Tzatzalos E, Abilez OJ, Shukla P, Wu JC (2016) Engineered heart tissues and induced pluripotent stem cells: macro- and microstructures for disease modeling, drug screening, and translational studies. Adv Drug Deliv Rev 96:234–244

    Article  CAS  Google Scholar 

  8. Ding S, Feng L, Wu J et al (2018) Bioprinting of stem cells: interplay of bioprinting process, bioinks, and stem cell properties. ACS Biomater Sci Eng 4:3108–3124. https://doi.org/10.1021/acsbiomaterials.8b00399

    Article  CAS  PubMed  Google Scholar 

  9. Maiullari F, Costantini M, Milan M et al (2018) A multi-cellular 3D bioprinting approach for vascularized heart tissue engineering based on HUVECs and iPSC-derived cardiomyocytes. Sci Rep 8:1–5. https://doi.org/10.1038/s41598-018-31848-x

    Article  CAS  Google Scholar 

  10. Jun I, Han HS, Edwards JR, Jeon H (2018) Electrospun fibrous scaffolds for tissue engineering: viewpoints on architecture and fabrication. Int J Mol Sci 19:745

    Article  Google Scholar 

  11. MacQueen LA, Sheehy SP, Chantre CO et al (2018) A tissue-engineered scale model of the heart ventricle. Nat Biomed Eng 2:930–941. https://doi.org/10.1038/s41551-018-0271-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hinton TJ, Jallerat Q, Palchesko RN et al (2015) Three-dimensional printing of complex biological structures by freeform reversible embedding of suspended hydrogels. Sci Adv 1:e1500758. https://doi.org/10.1126/sciadv.1500758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lee A, Hudson AR, Shiwarski DJ et al (2019) 3D bioprinting of collagen to rebuild components of the human heart. Science (80- ) 365:482–487. https://doi.org/10.1126/science.aav9051

    Article  CAS  Google Scholar 

  14. Burridge PW, Holmström A, Wu JC (2015) Chemically defined culture and cardiomyocyte differentiation of human pluripotent stem cells. Curr Protoc Hum Genet 87:21.3.1–21.3.15. https://doi.org/10.1002/0471142905.hg2103s87

    Article  Google Scholar 

  15. Xu Y, Zhu X, Hahm HS et al (2010) Revealing a core signaling regulatory mechanism for pluripotent stem cell survival and self-renewal by small molecules. Proc Natl Acad Sci U S A 107:8129–8134. https://doi.org/10.1073/pnas.1002024107

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam W. Feinberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Coffin, B.D., Hudson, A.R., Lee, A., Feinberg, A.W. (2022). FRESH 3D Bioprinting a Ventricle-like Cardiac Construct Using Human Stem Cell-Derived Cardiomyocytes. In: Coulombe, K.L., Black III, L.D. (eds) Cardiac Tissue Engineering. Methods in Molecular Biology, vol 2485. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2261-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2261-2_5

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2260-5

  • Online ISBN: 978-1-0716-2261-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics