Skip to main content

Measurement of Flower Metabolite Concentrations Using Gas Chromatography–Mass Spectrometry and High-Performance Liquid Chromatography–Mass Spectrometry

  • Protocol
  • First Online:
Book cover Plant Gametogenesis

Abstract

Metabolite profiling aiming at quantifying the metabolome of flowers is emerging as a suitable tool to understand the metabolic complexity of these reproductive organs and the associations between primary and secondary metabolites which characterize them. This chapter provides a general method for the combined analyses of primary and secondary metabolites via gas chromatography–mass spectrometry (GC-MS) and high-performance liquid chromatography–mass spectrometry (LC-MS) of flower samples. We describe the preparatory steps, the procedure of metabolites’ extraction and finally provide examples of data representation. The method described here can be applied to the analysis of metabolomes of entire flowers, as well as specific flower organs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Misra CS, Santos MR, Rafael-Fernandes M et al (2019) Transcriptomics of Arabidopsis sperm cells at single-cell resolution. Plant Reprod 32(1):29–38

    Article  CAS  Google Scholar 

  2. Palovaara J, Weijers D (2020) Cell type-specific transcriptomics in the plant embryo using an adapted INTACT protocol. In: Plant metabolomics, Methods mol biol, vol 2122, pp 141–150

    Google Scholar 

  3. Chen D, Yan W, Fu L-Y et al (2018) Architecture of gene regulatory networks controlling flower development in Arabidopsis thaliana. Nat Commun 9(1):1–13

    Article  Google Scholar 

  4. Mergner J, Frejno M, Messerer M et al (2020) Proteomic and transcriptomic profiling of aerial organ development in Arabidopsis. Sci Data 7(1):1–11

    Article  Google Scholar 

  5. Dafny-Yelin M, Guterman I, Menda N et al (2005) Flower proteome: changes in protein spectrum during the advanced stages of rose petal development. Planta 222(1):37–46

    Article  CAS  Google Scholar 

  6. An D, Chen J-G, Gao Y-Q et al (2017) AtHKT1 drives adaptation of Arabidopsis thaliana to salinity by reducing floral sodium content. PLoS Genet 13(10):e1007086

    Article  Google Scholar 

  7. Li D, Heiling S, Baldwin IT et al (2016) Illuminating a plant’s tissue-specific metabolic diversity using computational metabolomics and information theory. Proc Natl Acad Sci 113(47):E7610–E7618

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Tohge T, Borghi M, Fernie AR (2018) The natural variance of the Arabidopsis floral secondary metabolites. Sci Data 5:180051

    Article  CAS  Google Scholar 

  9. Borghi M, Fernie AR (2017) Floral metabolism of sugars and amino acids: implications for pollinators’ preferences and seed and fruit set. Plant Physiol 175(4):1510–1152

    Article  CAS  Google Scholar 

  10. Borghi M, de Souza LP, Yoshida T et al (2019) Flowers and climate change: a metabolic perspective. New Phytol 224(4):1425–1441

    Article  Google Scholar 

  11. Borghi M, Fernie AR (2020) Outstanding questions in flower metabolism. Plant J 103:1275–1288

    Article  CAS  Google Scholar 

  12. de Souza LP, Fernie AR, Tohge T (2018) Carbon atomic survey for identification of selected metabolic fluxes. In: Plant metabolomics, Methods mol biol, vol 1178. Springer, pp 59–67

    Chapter  Google Scholar 

  13. Lima VF, de Souza LP, Williams TC et al (2018) Gas chromatography–mass spectrometry-based 13 C-labeling studies in plant metabolomics. In: Plant metabolomics, Methods mol biol, vol 1178. Springer, pp 47–58

    Chapter  Google Scholar 

  14. Osorio S, Do PT, Fernie AR (2011) Profiling primary metabolites of tomato fruit with gas chromatography/mass spectrometry. In: Plant metabolomics, Methods mol biol, vol 860. Springer, pp 101–109

    Chapter  Google Scholar 

  15. Shimizu T, Watanabe M, Fernie AR et al (2018) Targeted LC-MS analysis for plant secondary metabolites. In: Plant metabolomics, Methods mol biol, vol 1178. Springer, pp 171–181

    Chapter  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support of the Max Planck Society and Utah State University startup funding to M.B.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monica Borghi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Borghi, M., Perez de Souza, L., Fernie, A.R. (2022). Measurement of Flower Metabolite Concentrations Using Gas Chromatography–Mass Spectrometry and High-Performance Liquid Chromatography–Mass Spectrometry. In: Lambing, C. (eds) Plant Gametogenesis. Methods in Molecular Biology, vol 2484. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2253-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2253-7_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2252-0

  • Online ISBN: 978-1-0716-2253-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics