Skip to main content

Time-Restricted Feeding and Caloric Restriction: Two Feeding Regimens at the Crossroad of Metabolic and Circadian Regulation

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2482))

Abstract

In addition to diet quality and quantity, the “timing” of food intake recently emerged as a third key parameter in nutritional and metabolic health. The link between nutrition timing and metabolic homeostasis is in part due to the regulation of daily feeding:fasting cycles and metabolic pathways by the circadian clock. Preclinical feeding regimen studies in rodents are invaluable to further define the modalities of this relationship and get a better understanding of its mechanistic underpinnings. Time-restricted feeding (TRF) and caloric restriction (CR) are examples of feeding regimen at the crossroads of metabolic and circadian regulation. Here we propose methods to implement TRF and CR highlighting the parameters that are relevant to the study of circadian and metabolic health. We also provide methods to determine their impact on the output of the circadian clock by analyzing diurnal expression profiles using 24 h time-series collection as well as their impact on metabolic homeostasis using a glucose tolerance test (GTT).

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. GBD 2017 Diet Collaborators (2019) Health effects of dietary risks in 195 countries, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 393(10184):1958–1972

    Article  Google Scholar 

  2. Micha R, Shulkin ML, Penalvo JL, Khatibzadeh S, Singh GM, Rao M, Fahimi S, Powles J, Mozaffarian D (2017) Etiologic effects and optimal intakes of foods and nutrients for risk of cardiovascular diseases and diabetes: systematic reviews and meta-analyses from the Nutrition and Chronic Diseases Expert Group (NutriCoDE). PLoS One 12(4):e0175149

    Article  Google Scholar 

  3. DeSalvo KB, Olson R, Casavale KO (2016) Dietary guidelines for Americans. JAMA 315(5):457–458

    Article  CAS  Google Scholar 

  4. Mattson MP, Allison DB, Fontana L, Harvie M, Longo VD, Malaisse WJ, Mosley M, Notterpek L, Ravussin E, Scheer FA, Seyfried TN, Varady KA, Panda S (2014) Meal frequency and timing in health and disease. Proc Natl Acad Sci U S A 111(47):16647–16653

    Article  CAS  Google Scholar 

  5. Beccuti G, Monagheddu C, Evangelista A, Ciccone G, Broglio F, Soldati L, Bo S (2017) Timing of food intake: sounding the alarm about metabolic impairments? A systematic review. Pharmacol Res 125(Pt B):132–141

    Article  Google Scholar 

  6. Manoogian ENC, Chaix A, Panda S (2019) When to eat: the importance of eating patterns in health and disease. J Biol Rhythm 34(6):579–581

    Article  Google Scholar 

  7. Asher G, Sassone-Corsi P (2015) Time for food: the intimate interplay between nutrition, metabolism, and the circadian clock. Cell 161(1):84–92

    Article  CAS  Google Scholar 

  8. Bass J, Lazar MA (2016) Circadian time signatures of fitness and disease. Science 354(6315):994–999

    Article  CAS  Google Scholar 

  9. Panda S (2016) Circadian physiology of metabolism. Science 354(6315):1008–1015

    Article  CAS  Google Scholar 

  10. Pan A, Schernhammer ES, Sun Q, Hu FB (2011) Rotating night shift work and risk of type 2 diabetes: two prospective cohort studies in women. PLoS Med 8(12):e1001141

    Article  Google Scholar 

  11. Zarrinpar A, Chaix A, Panda S (2016) Daily eating patterns and their impact on health and disease. Trends Endocrinol Metab 27(2):69–83

    Article  CAS  Google Scholar 

  12. Kohsaka A, Laposky AD, Ramsey KM, Estrada C, Joshu C, Kobayashi Y, Turek FW, Bass J (2007) High-fat diet disrupts behavioral and molecular circadian rhythms in mice. Cell Metab 6(5):414–421

    Article  CAS  Google Scholar 

  13. Chaix A, Zarrinpar A, Miu P, Panda S (2014) Time-restricted feeding is a preventative and therapeutic intervention against diverse nutritional challenges. Cell Metab 20(6):991–1005

    Article  CAS  Google Scholar 

  14. Sherman H, Genzer Y, Cohen R, Chapnik N, Madar Z, Froy O (2012) Timed high-fat diet resets circadian metabolism and prevents obesity. FASEB J 26(8):3493–3502

    Article  CAS  Google Scholar 

  15. Hatori M, Vollmers C, Zarrinpar A, DiTacchio L, Bushong EA, Gill S, Leblanc M, Chaix A, Joens M, Fitzpatrick JA, Ellisman MH, Panda S (2012) Time-restricted feeding without reducing caloric intake prevents metabolic diseases in mice fed a high-fat diet. Cell Metab 15(6):848–860

    Article  CAS  Google Scholar 

  16. Arble DM, Bass J, Laposky AD, Vitaterna MH, Turek FW (2009) Circadian timing of food intake contributes to weight gain. Obesity (Silver Spring) 17(11):2100–2102

    Article  Google Scholar 

  17. Chaix A, Lin T, Le HD, Chang MW, Panda S (2019) Time-restricted feeding prevents obesity and metabolic syndrome in mice lacking a circadian clock. Cell Metab 29(2):303–319.e4

    Article  CAS  Google Scholar 

  18. Woodie LN, Luo Y, Wayne MJ, Graff EC, Ahmed B, O’Neill AM, Greene MW (2018) Restricted feeding for 9h in the active period partially abrogates the detrimental metabolic effects of a Western diet with liquid sugar consumption in mice. Metabolism 82:1–13

    Article  CAS  Google Scholar 

  19. Delahaye LB, Bloomer RJ, Butawan MB, Wyman JM, Hill JL, Lee HW, Liu AC, McAllan L, Han JC, van der Merwe M (2018) Time-restricted feeding of a high-fat diet in male C57BL/6 mice reduces adiposity but does not protect against increased systemic inflammation. Appl Physiol Nutr Metab 43(10):1033–1042

    Article  CAS  Google Scholar 

  20. Sundaram S, Yan L (2016) Time-restricted feeding reduces adiposity in mice fed a high-fat diet. Nutr Res 36(6):603–611

    Article  CAS  Google Scholar 

  21. Duncan MJ, Smith JT, Narbaiza J, Mueez F, Bustle LB, Qureshi S, Fieseler C, Legan SJ (2016) Restricting feeding to the active phase in middle-aged mice attenuates adverse metabolic effects of a high-fat diet. Physiol Behav 167:1–9

    Article  CAS  Google Scholar 

  22. Damiola F, Le Minh N, Preitner N, Kornmann B, Fleury-Olela F, Schibler U (2000) Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus. Genes Dev 14(23):2950–2961

    Article  CAS  Google Scholar 

  23. Fontana L, Partridge L, Longo VD (2010) Extending healthy life span—from yeast to humans. Science 328(5976):321–326

    Article  CAS  Google Scholar 

  24. Solanas G, Peixoto FO, Perdiguero E, Jardi M, Ruiz-Bonilla V, Datta D, Symeonidi A, Castellanos A, Welz PS, Caballero JM, Sassone-Corsi P, Munoz-Canoves P, Benitah SA (2017) Aged stem cells reprogram their daily rhythmic functions to adapt to stress. Cell 170(4):678–692.e20

    Article  CAS  Google Scholar 

  25. Challet E (2010) Interactions between light, mealtime and calorie restriction to control daily timing in mammals. J Comp Physiol B 180(5):631–644

    Article  Google Scholar 

  26. Acosta-Rodriguez VA, de Groot MHM, Rijo-Ferreira F, Green CB, Takahashi JS (2017) Mice under caloric restriction self-impose a temporal restriction of food intake as revealed by an automated feeder system. Cell Metab 26(1):267–277.e2

    Article  CAS  Google Scholar 

  27. Patel SA, Chaudhari A, Gupta R, Velingkaar N, Kondratov RV (2016) Circadian clocks govern calorie restriction-mediated life span extension through BMAL1- and IGF-1-dependent mechanisms. FASEB J 30(4):1634–1642

    Article  CAS  Google Scholar 

  28. Greenwell BJ, Trott AJ, Beytebiere JR, Pao S, Bosley A, Beach E, Finegan P, Hernandez C, Menet JS (2019) Rhythmic food intake drives rhythmic gene expression more potently than the hepatic circadian clock in mice. Cell Rep 27(3):649–657.e5

    Article  CAS  Google Scholar 

  29. Hughes ME, Abruzzi KC, Allada R, Anafi R, Arpat AB, Asher G, Baldi P, de Bekker C, Bell-Pedersen D, Blau J, Brown S, Ceriani MF, Chen Z, Chiu JC, Cox J, Crowell AM, DeBruyne JP, Dijk DJ, DiTacchio L, Doyle FJ, Duffield GE, Dunlap JC, Eckel-Mahan K, Esser KA, FitzGerald GA, Forger DB, Francey LJ, Fu YH, Gachon F, Gatfield D, de Goede P, Golden SS, Green C, Harer J, Harmer S, Haspel J, Hastings MH, Herzel H, Herzog ED, Hoffmann C, Hong C, Hughey JJ, Hurley JM, de la Iglesia HO, Johnson C, Kay SA, Koike N, Kornacker K, Kramer A, Lamia K, Leise T, Lewis SA, Li J, Li X, Liu AC, Loros JJ, Martino TA, Menet JS, Merrow M, Millar AJ, Mockler T, Naef F, Nagoshi E, Nitabach MN, Olmedo M, Nusinow DA, Ptacek LJ, Rand D, Reddy AB, Robles MS, Roenneberg T, Rosbash M, Ruben MD, Rund SSC, Sancar A, Sassone-Corsi P, Sehgal A, Sherrill-Mix S, Skene DJ, Storch KF, Takahashi JS, Ueda HR, Wang H, Weitz C, Westermark PO, Wijnen H, Xu Y, Wu G, Yoo SH, Young M, Zhang EE, Zielinski T, Hogenesch JB (2017) Guidelines for genome-scale analysis of biological rhythms. J Biol Rhythm 32(5):380–393

    Article  CAS  Google Scholar 

  30. Ayala JE, Samuel VT, Morton GJ, Obici S, Croniger CM, Shulman GI, Wasserman DH, McGuinness OP, N.I.H.M.M.P.C. Consortium (2010) Standard operating procedures for describing and performing metabolic tests of glucose homeostasis in mice. Dis Model Mech 3(9–10):525–534

    Article  CAS  Google Scholar 

Download references

Acknowledgments

I would like to acknowledge the numerous outstanding scientists from every stage of the scientific career path in the Panda and Chaix’s lab who have made it possible for me to run TRF experiments for almost 10 years. I also would like to thank Patrick-Simon Welz for careful and helpful reading and editing of this chapter. This chapter is dedicated to Drs. Paolo Sassone-Corsi and Michael E. Hughes for their influential role in my scientific training as a chronobiologist. AC is supported by grants from the National Institutes of Health (NIH) R01 AG065993 and from the American Heart Association (AHA) 18CDA34110292.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amandine Chaix .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Chaix, A. (2022). Time-Restricted Feeding and Caloric Restriction: Two Feeding Regimens at the Crossroad of Metabolic and Circadian Regulation. In: Solanas, G., Welz, P.S. (eds) Circadian Regulation. Methods in Molecular Biology, vol 2482. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2249-0_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2249-0_22

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2248-3

  • Online ISBN: 978-1-0716-2249-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics