Skip to main content

Simultaneous Mechanical and Fluorescence Detection of Helicase-Catalyzed DNA Unwinding

  • Protocol
  • First Online:
Optical Tweezers

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2478))

Abstract

Helicases are ubiquitous molecular motor proteins that utilize the energy derived from the hydrolysis of nucleoside triphosphates (NTPs) to transiently convert the duplex form of nucleic acids to single-stranded intermediates for many biological processes. These enzymes play vital roles in nearly all aspects of nucleic acid metabolism, such as DNA repair and RNA splicing. Understanding helicase’s functional roles requires methods to dissect the mechanisms of motor proteins at the molecular level. In the past three decades, there has been a large increase in the application of single-molecule approaches to investigate helicases. These techniques, such as optical tweezers and single-molecule fluorescence, offer capabilities to monitor helicase motions with unprecedented spatiotemporal resolution, to apply quantitative forces to probe the chemo-mechanical activities of these motors and to resolve helicase heterogeneity at the single-molecule level. In this chapter, we describe a single-molecule method that combines optical tweezers with confocal fluorescence microscopy to study helicase-catalyzed DNA unwinding. Using Bloom syndrome protein (BLM), a multifunctional helicase that maintains genome stability, as an example, we show that this method allows for the simultaneous detection of displacement, force and fluorescence signals of a single DNA molecule during unwinding in real time, leading to the discovery of a distinct bidirectional unwinding mode of BLM that is activated by a single-stranded DNA binding protein called replication protein A (RPA). We provide detailed instructions on how to prepare two DNA templates to be used in the assays, purify the BLM and RPA proteins, perform single-molecule experiments, and acquire and analyse the data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Caruthers JM, McKay DB (2002) Helicase structure and mechanism. Curr Opin Struct Biol 12(1):123–133. https://doi.org/10.1016/s0959-440x(02)00298-1

    Article  Google Scholar 

  2. Lohman TM, Bjornson KP (1996) Mechanisms of helicase-catalyzed DNA unwinding. Annu Rev Biochem 65:169–214. https://doi.org/10.1146/annurev.bi.65.070196.001125

    Article  Google Scholar 

  3. Patel SS, Donmez I (2006) Mechanisms of helicases. J Biol Chem 281(27):18265–18268. https://doi.org/10.1074/jbc.R600008200

    Article  Google Scholar 

  4. Wu Y (2012) Unwinding and rewinding: double faces of helicase? J Nucleic Acids 2012:140601. https://doi.org/10.1155/2012/140601

    Article  Google Scholar 

  5. Lohman TM, Tomko EJ, Wu CG (2008) Non-hexameric DNA helicases and translocases: mechanisms and regulation. Nat Rev Mol Cell Biol 9(5):391–401. https://doi.org/10.1038/nrm2394

    Article  Google Scholar 

  6. Sun B, Singh A, Sultana S, Inman JT, Patel SS, Wang MD (2018) Helicase promotes replication re-initiation from an RNA transcript. Nat Commun 9(1):2306. https://doi.org/10.1038/s41467-018-04702-x

    Article  ADS  Google Scholar 

  7. Sun B, Pandey M, Inman JT, Yang Y, Kashlev M, Patel SS, Wang MD (2015) T7 replisome directly overcomes DNA damage. Nat Commun 6:10260. https://doi.org/10.1038/ncomms10260

    Article  ADS  Google Scholar 

  8. Sharma S, Doherty KM, Brosh RM Jr (2006) Mechanisms of RecQ helicases in pathways of DNA metabolism and maintenance of genomic stability. Biochem J 398(3):319–337. https://doi.org/10.1042/BJ20060450

    Article  Google Scholar 

  9. Brosh RM (2013) DNA helicases involved in DNA repair and their roles in cancer. Nat Rev Cancer 13(8):542–558. https://doi.org/10.1038/nrc3560

    Article  Google Scholar 

  10. van Brabant AJ, Stan R, Ellis NA (2000) DNA helicases, genomic instability, and human genetic disease. Annu Rev Genomics Hum Genet 1:409–459. https://doi.org/10.1146/annurev.genom.1.1.409

    Article  Google Scholar 

  11. Suhasini AN, Brosh RM Jr (2013) Disease-causing missense mutations in human DNA helicase disorders. Mutat Res 752(2):138–152. https://doi.org/10.1016/j.mrrev.2012.12.004

    Article  Google Scholar 

  12. Bernstein KA, Gangloff S, Rothstein R (2010) The RecQ DNA helicases in DNA repair. Annu Rev Genet 44:393–417. https://doi.org/10.1146/annurev-genet-102209-163602

    Article  Google Scholar 

  13. Chu WK, Hickson ID (2009) RecQ helicases: multifunctional genome caretakers. Nat Rev Cancer 9(9):644–654. https://doi.org/10.1038/nrc2682

    Article  Google Scholar 

  14. Ha T, Kozlov AG, Lohman TM (2012) Single-molecule views of protein movement on single-stranded DNA. Annu Rev Biophys 41:295–319. https://doi.org/10.1146/annurev-biophys-042910-155351

    Article  Google Scholar 

  15. Lionnet T, Dawid A, Bigot S, Barre FX, Saleh OA, Heslot F, Allemand JF, Bensimon D, Croquette V (2006) DNA mechanics as a tool to probe helicase and translocase activity. Nucleic Acids Res 34(15):4232–4244. https://doi.org/10.1093/nar/gkl451

    Article  Google Scholar 

  16. Sun B, Wang MD (2016) Single-molecule perspectives on helicase mechanisms and functions. Crit Rev Biochem Mol Biol 51(1):15–25. https://doi.org/10.3109/10409238.2015.1102195

    Article  Google Scholar 

  17. Joo C, Balci H, Ishitsuka Y, Buranachai C, Ha T (2008) Advances in single-molecule fluorescence methods for molecular biology. Annu Rev Biochem 77:51–76. https://doi.org/10.1146/annurev.biochem.77.070606.101543

    Article  Google Scholar 

  18. Klaue D, Kobbe D, Kemmerich F, Kozikowska A, Puchta H, Seidel R (2013) Fork sensing and strand switching control antagonistic activities of RecQ helicases. Nat Commun 4:2024. https://doi.org/10.1038/ncomms3024

    Article  ADS  Google Scholar 

  19. Sun B, Johnson DS, Patel G, Smith BY, Pandey M, Patel SS, Wang MD (2011) ATP-induced helicase slippage reveals highly coordinated subunits. Nature 478(7367):132–135. https://doi.org/10.1038/nature10409

    Article  ADS  Google Scholar 

  20. Sun B, Wei KJ, Zhang B, Zhang XH, Dou SX, Li M, Xi XG (2008) Impediment of E. coli UvrD by DNA-destabilizing force reveals a strained-inchworm mechanism of DNA unwinding. EMBO J 27(24):3279–3287. https://doi.org/10.1038/emboj.2008.240

    Article  Google Scholar 

  21. Dessinges MN, Lionnet T, Xi XG, Bensimon D, Croquette V (2004) Single-molecule assay reveals strand switching and enhanced processivity of UvrD. Proc Natl Acad Sci U S A 101(17):6439–6444. https://doi.org/10.1073/pnas.0306713101

    Article  ADS  Google Scholar 

  22. Dumont S, Cheng W, Serebrov V, Beran RK, Tinoco I Jr, Pyle AM, Bustamante C (2006) RNA translocation and unwinding mechanism of HCV NS3 helicase and its coordination by ATP. Nature 439(7072):105–108. https://doi.org/10.1038/nature04331

    Article  ADS  Google Scholar 

  23. Crickard JB, Xue C, Wang W, Kwon Y, Sung P, Greene EC (2019) The RecQ helicase Sgs1 drives ATP-dependent disruption of Rad51 filaments. Nucleic Acids Res 47(9):4694–4706. https://doi.org/10.1093/nar/gkz186

    Article  Google Scholar 

  24. Lee JY, Finkelstein IJ, Arciszewska LK, Sherratt DJ, Greene EC (2014) Single-molecule imaging of FtsK translocation reveals mechanistic features of protein-protein collisions on DNA. Mol Cell 54(5):832–843. https://doi.org/10.1016/j.molcel.2014.03.033

    Article  Google Scholar 

  25. Yodh JG, Stevens BC, Kanagaraj R, Janscak P, Ha T (2009) BLM helicase measures DNA unwound before switching strands and hRPA promotes unwinding reinitiation. EMBO J 28(4):405–416. https://doi.org/10.1038/emboj.2008.298

    Article  Google Scholar 

  26. Ha T, Rasnik I, Cheng W, Babcock HP, Gauss GH, Lohman TM, Chu S (2002) Initiation and re-initiation of DNA unwinding by the Escherichia coli Rep helicase. Nature 419(6907):638–641. https://doi.org/10.1038/nature01083

    Article  ADS  Google Scholar 

  27. Finkelstein IJ, Visnapuu ML, Greene EC (2010) Single-molecule imaging reveals mechanisms of protein disruption by a DNA translocase. Nature 468(7326):983–987. https://doi.org/10.1038/nature09561

    Article  ADS  Google Scholar 

  28. Bianco PR, Brewer LR, Corzett M, Balhorn R, Yeh Y, Kowalczykowski SC, Baskin RJ (2001) Processive translocation and DNA unwinding by individual RecBCD enzyme molecules. Nature 409(6818):374–378. https://doi.org/10.1038/35053131

    Article  ADS  Google Scholar 

  29. Comstock MJ, Whitley KD, Jia H, Sokoloski J, Lohman TM, Ha T, Chemla YR (2015) Direct observation of structure-function relationship in a nucleic acid-processing enzyme. Science 348(6232):352–354. https://doi.org/10.1126/science.aaa0130

    Article  ADS  Google Scholar 

  30. Lee KS, Balci H, Jia H, Lohman TM, Ha T (2013) Direct imaging of single UvrD helicase dynamics on long single-stranded DNA. Nat Commun 4:1878. https://doi.org/10.1038/ncomms2882

    Article  ADS  Google Scholar 

  31. Qin Z, Bi L, Hou XM, Zhang S, Zhang X, Lu Y, Li M, Modesti M, Xi XG, Sun B (2020) Human RPA activates BLM’s bidirectional DNA unwinding from a nick. elife 9:e54098. https://doi.org/10.7554/eLife.54098

    Article  Google Scholar 

  32. Davies SL, North PS, Hickson ID (2007) Role for BLM in replication-fork restart and suppression of origin firing after replicative stress. Nat Struct Mol Biol 14(7):677–679. https://doi.org/10.1038/nsmb1267

    Article  Google Scholar 

  33. Vriend LE, Krawczyk PM (2017) Nick-initiated homologous recombination: protecting the genome, one strand at a time. DNA Repair (Amst) 50:1–13. https://doi.org/10.1016/j.dnarep.2016.12.005

    Article  Google Scholar 

  34. Wu L, Hickson ID (2003) The Bloom’s syndrome helicase suppresses crossing over during homologous recombination. Nature 426(6968):870–874. https://doi.org/10.1038/nature02253

    Article  ADS  Google Scholar 

  35. Singleton MR, Dillingham MS, Wigley DB (2007) Structure and mechanism of helicases and nucleic acid translocases. Annu Rev Biochem 76:23–50. https://doi.org/10.1146/annurev.biochem.76.052305.115300

    Article  Google Scholar 

  36. Inman JT, Smith BY, Hall MA, Forties RA, Jin J, Sethna JP, Wang MD (2014) DNA Y structure: a versatile, multidimensional single molecule assay. Nano Lett 14(11):6475–6480. https://doi.org/10.1021/nl503009d

    Article  ADS  Google Scholar 

  37. Modesti M (2018) Fluorescent labeling of proteins. Methods Mol Biol 1665:115–134. https://doi.org/10.1007/978-1-4939-7271-5_6

    Article  Google Scholar 

  38. Shi J, Liu NN, Yang YT, Xi XG (2017) Purification and enzymatic characterization of Gallus gallus BLM helicase. J Biochem 162(3):183–191. https://doi.org/10.1093/jb/mvx013

    Article  Google Scholar 

  39. Gross P, Farge G, Peterman EJG, Wuite GJL (2010) Combining optical tweezers, single-molecule fluorescence microscopy, and microfluidics for studies of DNA–protein interactions. Methods Enzymol 475:427–453. https://doi.org/10.1016/s0076-6879(10)75017-5

    Article  Google Scholar 

  40. King GA, Gross P, Bockelmann U, Modesti M, Wuite GJ, Peterman EJ (2013) Revealing the competition between peeled ssDNA, melting bubbles, and S-DNA during DNA overstretching using fluorescence microscopy. Proc Natl Acad Sci U S A 110(10):3859–3864. https://doi.org/10.1073/pnas.1213676110

    Article  ADS  Google Scholar 

  41. Heller I, Sitters G, Broekmans OD, Farge G, Menges C, Wende W, Hell SW, Peterman EJ, Wuite GJ (2013) STED nanoscopy combined with optical tweezers reveals protein dynamics on densely covered DNA. Nat Methods 10(9):910–916. https://doi.org/10.1038/nmeth.2599

    Article  Google Scholar 

  42. Wang MD, Yin H, Landick R, Gelles J, Block SM (1997) Stretching DNA with optical tweezers. Biophys J 72(3):1335–1346. https://doi.org/10.1016/S0006-3495(97)78780-0

    Article  Google Scholar 

  43. Smith SB, Cui Y, Bustamante C (1996) Overstretching B-DNA: the elastic response of individual double-stranded and single-stranded DNA molecules. Science 271(5250):795–799. https://doi.org/10.1126/science.271.5250.795

    Article  ADS  Google Scholar 

  44. Kang D, Lee S, Ryu KS, Cheong HK, Kim EH, Park CJ (2018) Interaction of replication protein A with two acidic peptides from human Bloom syndrome protein. FEBS Lett 592(4):547–558. https://doi.org/10.1002/1873-3468.12992

    Article  Google Scholar 

  45. Kemmerich FE, Daldrop P, Pinto C, Levikova M, Cejka P, Seidel R (2016) Force regulated dynamics of RPA on a DNA fork. Nucleic Acids Res 44(12):5837–5848. https://doi.org/10.1093/nar/gkw187

    Article  Google Scholar 

  46. Candelli A, Hoekstra TP, Farge G, Gross P, Peterman EJ, Wuite GJ (2013) A toolbox for generating single-stranded DNA in optical tweezers experiments. Biopolymers 99(9):611–620. https://doi.org/10.1002/bip.22225

    Article  Google Scholar 

  47. Schakenraad K, Biebricher AS, Sebregts M, Ten Bensel B, Peterman EJG, Wuite GJL, Heller I, Storm C, van der Schoot P (2017) Hyperstretching DNA. Nat Commun 8(1):2197. https://doi.org/10.1038/s41467-017-02396-1

    Article  ADS  Google Scholar 

  48. Gunther K, Mertig M, Seidel R (2010) Mechanical and structural properties of YOYO-1 complexed DNA. Nucleic Acids Res 38(19):6526–6532. https://doi.org/10.1093/nar/gkq434

    Article  Google Scholar 

  49. King GA, Burla F, Peterman EJG, Wuite GJL (2019) Supercoiling DNA optically. Proc Natl Acad Sci U S A 116(52):26534–26539. https://doi.org/10.1073/pnas.1908826116

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Key R&D Program of China (2017YFA0106700 and 2016YFA0500902), the National Natural Science Foundation of China (32022048), and the Natural Science Foundation of Shanghai (19ZR1434100).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Sun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Bi, L., Qin, Z., Hou, XM., Modesti, M., Sun, B. (2022). Simultaneous Mechanical and Fluorescence Detection of Helicase-Catalyzed DNA Unwinding. In: Gennerich, A. (eds) Optical Tweezers. Methods in Molecular Biology, vol 2478. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2229-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2229-2_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2228-5

  • Online ISBN: 978-1-0716-2229-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics