Skip to main content

Live-Cell Visualization of DNA Transfer and Pilus Dynamics During Bacterial Conjugation

  • Protocol
  • First Online:
Chromosome Architecture

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2476))

Abstract

Bacterial genomes are highly plastic and evolve rapidly by acquiring new genetic information through horizontal gene transfer mechanisms. Capturing DNA transfer by conjugation between bacterial cells in real time is relevant to address bacterial genomes’ dynamic architecture comprehensively. Here, we describe a method allowing the direct visualization of bacterial conjugation in live cells, including the fluorescent labeling of the conjugative pilus and the monitoring of plasmid DNA transfer from donor to recipient cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Grohmann E, Muth G, Espinosa M (2003) Conjugative plasmid transfer in gram-positive bacteria. Microbiol Mol Biol Rev 67:277–301, table of contents

    Article  CAS  Google Scholar 

  2. Cruz FDL, Frost LS, Meyer RJ et al (2010) Conjugative DNA metabolism in Gram-negative bacteria. FEMS Microbiol Rev 34:18–40

    Article  Google Scholar 

  3. Lederberg J, Tatum EL (1946) Gene recombination in Escherichia coli. Nature 158:558

    Article  CAS  Google Scholar 

  4. Virolle C, Goldlust K, Djermoun S et al (2020) Plasmid transfer by conjugation in gram-negative bacteria: from the cellular to the community level. Genes (Basel) 11:1239

    Article  CAS  Google Scholar 

  5. Lawrence JG (1999) Gene transfer, speciation, and the evolution of bacterial genomes. Curr Opin Microbiol 2:519–523

    Article  CAS  Google Scholar 

  6. Ochman H, Lawrence JG, Groisman EA (2000) Lateral gene transfer and the nature of bacterial innovation. Nature 405:299–304

    Article  CAS  Google Scholar 

  7. Lesterlin C, Duabrry N (2016) Investigating bacterial chromosome architecture. In: Leake MC (ed) Chromosome architecture. Springer, New York, pp 61–72

    Chapter  Google Scholar 

  8. Turner L, Zhang R, Darnton NC et al (2010) Visualization of flagella during bacterial swarming. J Bacteriol 192:3259–3267

    Article  CAS  Google Scholar 

  9. Turner L, Stern AS, Berg HC (2012) Growth of flagellar filaments of Escherichia coli is independent of filament length. J Bacteriol 194:2437–2442

    Article  CAS  Google Scholar 

  10. Ellison CK, Dalia TN, Vidal Ceballos A et al (2018) Retraction of DNA-bound type IV competence pili initiates DNA uptake during natural transformation in vibrio cholerae. Nat Microbiol 3:773–780

    Article  CAS  Google Scholar 

  11. Ellison CK, Dalia TN, Dalia AB et al (2019) Real-time microscopy and physical perturbation of bacterial pili using maleimide-conjugated molecules. Nat Protoc 14:1803–1819

    Article  CAS  Google Scholar 

  12. Mercier R, Bautista S, Delannoy M et al (2020) The polar Ras-like GTPase MglA activates type IV pilus via SgmX to enable twitching motility in Myxococcus xanthus. Proc Natl Acad Sci U S A 117:28,366–28,373

    Article  CAS  Google Scholar 

  13. Ellison CK, Kan J, Chlebek JL et al (2019) A bifunctional ATPase drives tad pilus extension and retraction. Sci Adv 5:eaay2591

    Article  CAS  Google Scholar 

  14. Sangermani M, Hug I, Sauter N et al (2019) Tad pili play a dynamic role in Caulobacter crescentus surface colonization. mBio:10, e01237

    Google Scholar 

  15. Reyes-Lamothe R, Possoz C, Danilova O et al (2008) Independent positioning and action of Escherichia coli replisomes in live cells. Cell 133:90–102

    Article  CAS  Google Scholar 

  16. Reyes-Lamothe R, Sherratt DJ, Leake MC (2010) Stoichiometry and architecture of active DNA replication machinery in Escherichia coli. Science 328:498–501

    Article  CAS  Google Scholar 

  17. Nolivos S, Cayron J, Dedieu A et al (2019) Role of AcrAB-TolC multidrug efflux pump in drug-resistance acquisition by plasmid transfer. Science 364:778–782

    Article  CAS  Google Scholar 

  18. Schindelin J, Arganda-Carreras I, Frise E et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682

    Article  CAS  Google Scholar 

  19. Ducret A, Quardokus EM, Brun YV (2016) MicrobeJ, a tool for high throughput bacterial cell detection and quantitative analysis. Nat Microbiol 1:16,077

    Article  CAS  Google Scholar 

  20. Mason AF, Thordarson P (2016) Synthesis of protein bioconjugates via cysteine-maleimide chemistry. J Vis Exp (113). https://doi.org/10.3791/54157

  21. Renault K, Fredy JW, Renard P-Y et al (2018) Covalent modification of biomolecules through maleimide-based labeling strategies. Bioconjug Chem 29:2497–2513

    Article  CAS  Google Scholar 

  22. Costa TRD, Ilangovan A, Ukleja M et al (2016) Structure of the bacterial sex F pilus reveals an assembly of a stoichiometric protein-phospholipid complex. Cell 166:1436–1444.e10

    Article  CAS  Google Scholar 

  23. García-Nafría J, Watson JF, Greger IH (2016) IVA cloning: a single-tube universal cloning system exploiting bacterial in vivo assembly. Sci Rep 6:27,459

    Article  Google Scholar 

  24. Reuter A, Hilpert C, Dedieu-Berne A et al (2021) Targeted-antibacterial-plasmids (TAPs) combining conjugation and CRISPR/Cas systems achieve strain-specific antibacterial activity. Nucleic Acids Res 49:3584–3598

    Article  CAS  Google Scholar 

  25. Cayron J, Lesterlin C (2019) Multi-scale analysis of bacterial growth under stress treatments. J Vis Exp (153). https://doi.org/10.3791/60576

  26. Clarke M, Maddera L, Harris RL et al (2008) F-pili dynamics by live-cell imaging. Proc Natl Acad Sci U S A 105:17,978–17,981

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the National BioResource Project (NBRP). This work was supported by the Schlumberger Foundation for Education and Research (FSER 2019), and the French National Research Agency (grant number ANR-18-CE35-0008, PlasMed) provided funding to K.G. The authors declared no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Lesterlin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Goldlust, K., Couturier, A., Terradot, L., Lesterlin, C. (2022). Live-Cell Visualization of DNA Transfer and Pilus Dynamics During Bacterial Conjugation. In: Leake, M.C. (eds) Chromosome Architecture. Methods in Molecular Biology, vol 2476. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2221-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2221-6_6

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2220-9

  • Online ISBN: 978-1-0716-2221-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics