Skip to main content

Analyzing the Interaction of RBPJ with Mitotic Chromatin and Its Impact on Transcription Reactivation upon Mitotic Exit

  • Protocol
  • First Online:
Notch Signaling Research

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2472))

Abstract

The sequence-specific transcription factor RBPJ, also known as CSL (CBF1, Su(H), Lag1), is an evolutionarily conserved protein that mediates Notch signaling to guide cell fates. When cells enter mitosis, DNA is condensed and most transcription factors dissociate from chromatin; however, a few, select transcription factors, termed bookmarking factors, remain associated. These mitotic chromatin-bound factors are believed to play important roles in maintaining cell fates through cell division. RBPJ is one such factor that remains mitotic chromatin associated and therefore could function as a bookmarking factor. Here, we describe how to obtain highly purified mitotic cells from the mouse embryonal carcinoma cell line F9, perform chromatin immunoprecipitation with mitotic cells, and measure the first run of RNA synthesis upon mitotic exit. These methods serve as basis to understand the roles of mitotic bookmarking by RBPJ in propagating Notch signals through cell division.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Martinez-Balbas MA, Dey A, Rabindran SK, Ozato K, Wu C (1995) Displacement of sequence-specific transcription factors from mitotic chromatin. Cell 83(1):29–38. https://doi.org/10.1016/0092-8674(95)90231-7

    Article  PubMed  CAS  Google Scholar 

  2. Kouskouti A, Talianidis I (2005) Histone modifications defining active genes persist after transcriptional and mitotic inactivation. EMBO J 24(2):347–357. https://doi.org/10.1038/sj.emboj.7600516

    Article  PubMed  CAS  Google Scholar 

  3. Zaidi SK, Young DW, Montecino MA, Lian JB, van Wijnen AJ, Stein JL, Stein GS (2010) Mitotic bookmarking of genes: a novel dimension to epigenetic control. Nat Rev Genet 11(8):583–589. https://doi.org/10.1038/nrg2827

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Kadauke S, Blobel GA (2013) Mitotic bookmarking by transcription factors. Epigenetics Chromatin 6(1):6. https://doi.org/10.1186/1756-8935-6-6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Michelotti EF, Sanford S, Levens D (1997) Marking of active genes on mitotic chromosomes. Nature 388(6645):895–899. https://doi.org/10.1038/42282

    Article  PubMed  CAS  Google Scholar 

  6. Caravaca JM, Donahue G, Becker JS, He X, Vinson C, Zaret KS (2013) Bookmarking by specific and nonspecific binding of FoxA1 pioneer factor to mitotic chromosomes. Genes Dev 27(3):251–260. https://doi.org/10.1101/gad.206458.112

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Dey A, Nishiyama A, Karpova T, McNally J, Ozato K (2009) Brd4 marks select genes on mitotic chromatin and directs postmitotic transcription. Mol Biol Cell 20(23):4899–4909. https://doi.org/10.1091/mbc.E09-05-0380

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Lake RJ, Tsai PF, Choi I, Won KJ, Fan HY (2014) RBPJ, the major transcriptional effector of Notch signaling, remains associated with chromatin throughout mitosis, suggesting a role in mitotic bookmarking. PLoS Genet 10(3):e1004204. https://doi.org/10.1371/journal.pgen.1004204

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Fortini ME, Artavanis-Tsakonas S (1994) The suppressor of hairless protein participates in notch receptor signaling. Cell 79(2):273–282. https://doi.org/10.1016/0092-8674(94)90196-1

    Article  PubMed  CAS  Google Scholar 

  10. Artavanis-Tsakonas S, Rand MD, Lake RJ (1999) Notch signaling: cell fate control and signal integration in development. Science 284(5415):770–776. https://doi.org/10.1126/science.284.5415.770

    Article  PubMed  CAS  Google Scholar 

  11. Bray S, Bernard F (2010) Notch targets and their regulation. Curr Top Dev Biol 92:253–275. https://doi.org/10.1016/S0070-2153(10)92008-5

    Article  PubMed  CAS  Google Scholar 

  12. Das D, Lanner F, Main H, Andersson ER, Bergmann O, Sahlgren C, Heldring N, Hermanson O, Hansson EM, Lendahl U (2010) Notch induces cyclin-D1-dependent proliferation during a specific temporal window of neural differentiation in ES cells. Dev Biol 348(2):153–166. https://doi.org/10.1016/j.ydbio.2010.09.018

    Article  PubMed  CAS  Google Scholar 

  13. Kurpinski K, Lam H, Chu J, Wang A, Kim A, Tsay E, Agrawal S, Schaffer DV, Li S (2010) Transforming growth factor-beta and notch signaling mediate stem cell differentiation into smooth muscle cells. Stem Cells 28(4):734–742. https://doi.org/10.1002/stem.319

    Article  PubMed  CAS  Google Scholar 

  14. Lowell S, Benchoua A, Heavey B, Smith AG (2006) Notch promotes neural lineage entry by pluripotent embryonic stem cells. PLoS Biol 4(5):e121. https://doi.org/10.1371/journal.pbio.0040121

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Jang J, Ku SY, Kim JE, Choi K, Kim YY, Kim HS, Oh SK, Lee EJ, Cho HJ, Song YH, Lee SH, Lee SH, Suh CS, Kim SH, Moon SY, Choi YM (2008) Notch inhibition promotes human embryonic stem cell-derived cardiac mesoderm differentiation. Stem Cells 26(11):2782–2790. https://doi.org/10.1634/stemcells.2007-1053

    Article  PubMed  CAS  Google Scholar 

  16. Mason MJ, Fan G, Plath K, Zhou Q, Horvath S (2009) Signed weighted gene co-expression network analysis of transcriptional regulation in murine embryonic stem cells. BMC Genomics 10:327. https://doi.org/10.1186/1471-2164-10-327

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Bhagat TD, Zou Y, Huang S, Park J, Palmer MB, Hu C, Li W, Shenoy N, Giricz O, Choudhary G, Yu Y, Ko YA, Izquierdo MC, Park AS, Vallumsetla N, Laurence R, Lopez R, Suzuki M, Pullman J, Kaner J, Gartrell B, Hakimi AA, Greally JM, Patel B, Benhadji K, Pradhan K, Verma A, Susztak K (2017) Notch pathway is activated via genetic and epigenetic alterations and is a therapeutic target in clear cell renal cancer. J Biol Chem 292(3):837–846. https://doi.org/10.1074/jbc.M116.745208

    Article  PubMed  CAS  Google Scholar 

  18. Aoki S, Mizuma M, Takahashi Y, Haji Y, Okada R, Abe T, Karasawa H, Tamai K, Okada T, Morikawa T, Hayashi H, Nakagawa K, Motoi F, Naitoh T, Katayose Y, Unno M (2016) Aberrant activation of Notch signaling in extrahepatic cholangiocarcinoma: clinicopathological features and therapeutic potential for cancer stem cell-like properties. BMC Cancer 16(1):854. https://doi.org/10.1186/s12885-016-2919-4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Su Q, Xin L (2016) Notch signaling in prostate cancer: refining a therapeutic opportunity. Histol Histopathol 31(2):149–157. https://doi.org/10.14670/HH-11-685

    Article  PubMed  CAS  Google Scholar 

  20. Wu G, Wilson G, George J, Qiao L (2015) Modulation of Notch signaling as a therapeutic approach for liver cancer. Curr Gene Ther 15(2):171–181

    Article  CAS  Google Scholar 

  21. Yuan X, Wu H, Han N, Xu H, Chu Q, Yu S, Chen Y, Wu K (2014) Notch signaling and EMT in non-small cell lung cancer: biological significance and therapeutic application. J Hematol Oncol 7:87. https://doi.org/10.1186/s13045-014-0087-z

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Flores AN, McDermott N, Meunier A, Marignol L (2014) NUMB inhibition of NOTCH signalling as a therapeutic target in prostate cancer. Nat Rev Urol 11(9):499–507. https://doi.org/10.1038/nrurol.2014.195

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Ou JP, Lin HY, Su KY, Yu SL, Tseng IH, Chen CJ, Hsu HC, Chan DC, Sophia Chen YL (2012) Potential therapeutic role of Z-Isochaihulactone in lung cancer through induction of apoptosis via notch signaling. Evid Based Complement Alternat Med 2012:809204. https://doi.org/10.1155/2012/809204

    Article  PubMed  PubMed Central  Google Scholar 

  24. Han J, Hendzel MJ, Allalunis-Turner J (2011) Notch signaling as a therapeutic target for breast cancer treatment? Breast Cancer Res 13(3):210. https://doi.org/10.1186/bcr2875

    Article  PubMed  PubMed Central  Google Scholar 

  25. Al-Hussaini H, Subramanyam D, Reedijk M, Sridhar SS (2011) Notch signaling pathway as a therapeutic target in breast cancer. Mol Cancer Ther 10(1):9–15. https://doi.org/10.1158/1535-7163.MCT-10-0677

    Article  PubMed  CAS  Google Scholar 

  26. Villaronga MA, Bevan CL, Belandia B (2008) Notch signaling: a potential therapeutic target in prostate cancer. Curr Cancer Drug Targets 8(7):566–580

    Article  CAS  Google Scholar 

  27. Rizzo P, Miao H, D'Souza G, Osipo C, Song LL, Yun J, Zhao H, Mascarenhas J, Wyatt D, Antico G, Hao L, Yao K, Rajan P, Hicks C, Siziopikou K, Selvaggi S, Bashir A, Bhandari D, Marchese A, Lendahl U, Qin JZ, Tonetti DA, Albain K, Nickoloff BJ, Miele L (2008) Cross-talk between notch and the estrogen receptor in breast cancer suggests novel therapeutic approaches. Cancer Res 68(13):5226–5235. https://doi.org/10.1158/0008-5472.CAN-07-5744

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Shi W, Harris AL (2006) Notch signaling in breast cancer and tumor angiogenesis: cross-talk and therapeutic potentials. J Mammary Gland Biol Neoplasia 11(1):41–52. https://doi.org/10.1007/s10911-006-9011-7

    Article  PubMed  CAS  Google Scholar 

  29. Jackstadt R, van Hooff SR, Leach JD, Cortes-Lavaud X, Lohuis JO, Ridgway RA, Wouters VM, Roper J, Kendall TJ, Roxburgh CS, Horgan PG, Nixon C, Nourse C, Gunzer M, Clark W, Hedley A, Yilmaz OH, Rashid M, Bailey P, Biankin AV, Campbell AD, Adams DJ, Barry ST, Steele CW, Medema JP, Sansom OJ (2019) Epithelial NOTCH signaling rewires the tumor microenvironment of colorectal cancer to drive poor-prognosis subtypes and metastasis. Cancer Cell 36(3):319–336.e317. https://doi.org/10.1016/j.ccell.2019.08.003

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Stylianou S, Clarke RB, Brennan K (2006) Aberrant activation of notch signaling in human breast cancer. Cancer Res 66(3):1517–1525. https://doi.org/10.1158/0008-5472.CAN-05-3054

    Article  PubMed  CAS  Google Scholar 

  31. Xiao YF, Yong X, Tang B, Qin Y, Zhang JW, Zhang D, Xie R, Yang SM (2016) Notch and Wnt signaling pathway in cancer: crucial role and potential therapeutic targets (review). Int J Oncol 48(2):437–449. https://doi.org/10.3892/ijo.2015.3280

    Article  PubMed  CAS  Google Scholar 

  32. Yuan X, Wu H, Xu H, Xiong H, Chu Q, Yu S, Wu GS, Wu K (2015) Notch signaling: an emerging therapeutic target for cancer treatment. Cancer Lett 369(1):20–27. https://doi.org/10.1016/j.canlet.2015.07.048

    Article  PubMed  CAS  Google Scholar 

  33. Previs RA, Coleman RL, Harris AL, Sood AK (2015) Molecular pathways: translational and therapeutic implications of the Notch signaling pathway in cancer. Clin Cancer Res 21(5):955–961. https://doi.org/10.1158/1078-0432.CCR-14-0809

    Article  PubMed  CAS  Google Scholar 

  34. Shao H, Huang Q, Liu ZJ (2012) Targeting Notch signaling for cancer therapeutic intervention. Adv Pharmacol 65:191–234. https://doi.org/10.1016/B978-0-12-397927-8.00007-5

    Article  PubMed  CAS  Google Scholar 

  35. Miele L, Miao H, Nickoloff BJ (2006) NOTCH signaling as a novel cancer therapeutic target. Curr Cancer Drug Targets 6(4):313–323

    Article  CAS  Google Scholar 

  36. Dreval K, Lake RJ, Fan HY (2019) HDAC1 negatively regulates selective mitotic chromatin binding of the Notch effector RBPJ in a KDM5A-dependent manner. Nucleic Acids Res 47(9):4521–4538. https://doi.org/10.1093/nar/gkz178

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by American Heart Association 17GRNT33400020 to H.Y.F., and Cancer Center Support Grant P30CA118100. Support for microscopy imaging was provided by the University of New Mexico Cancer Center Fluorescence Microscopy Shared Resource, funded by NCI 2P30 CA118100 and NIGMS 5P50 GM085273.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua-Ying Fan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Dreval, K., Lake, R.J., Fan, HY. (2022). Analyzing the Interaction of RBPJ with Mitotic Chromatin and Its Impact on Transcription Reactivation upon Mitotic Exit. In: Jia, D. (eds) Notch Signaling Research. Methods in Molecular Biology, vol 2472. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2201-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2201-8_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2200-1

  • Online ISBN: 978-1-0716-2201-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics