Skip to main content

Preservation and Extraction of Malaria Parasite DNA from Dried Blood Spots

  • Protocol
  • First Online:
Malaria Immunology

Abstract

Molecular studies related to diagnosis and research rely on collection of blood samples and extraction of high-quality DNA. In Africa, where the populations carried 94% of the total burden of cases and deaths due to malaria in 2019, collection of samples is often challenged by remote study areas and lack of a cold chain to transport and store samples. Collection of blood on filter paper is a technique that is less invasive and has simpler requirements regarding training of staff, storage, and transport of samples than collection of venous blood samples. Dried blood spots (DBS) are therefore commonly used in many research projects. However, DNA quality can be affected by duration and conditions of storage. The quality of the DNA for molecular analyses also depends on a DNA extraction methodology that provides high-quality DNA with high purity and yield. Several protocols for DNA extraction have been described, and many comparative studies have analyzed and optimized the different methodologies to find an alternative to the more costly commercial extraction kits. This chapter describes recommendations for storage and preservation of DBS, and a Chelex-based protocol for extraction of DNA from DBS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. WHO (2020) World malaria report 2020: 20 years of global progress and challenges. WHO, Geneva

    Google Scholar 

  2. Hofmann N, Mwingira F, Shekalaghe S, Robinson LJ, Mueller I, Felger I (2015) Ultra-sensitive detection of Plasmodium falciparum by amplification of multi-copy subtelomeric targets. PLoS Med 12(3):e1001788. https://doi.org/10.1371/journal.pmed.1001788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Snounou G, Viriyakosol S, Zhu XP, Jarra W, Pinheiro L, do Rosario VE, Thaithong S, Brown KN (1993) High sensitivity of detection of human malaria parasites by the use of nested polymerase chain reaction. Mol Biochem Parasitol 61(2):315–320. https://doi.org/10.1016/0166-6851(93)90077-b

    Article  CAS  PubMed  Google Scholar 

  4. Lim MD (2018) Dried blood spots for global health diagnostics and surveillance: opportunities and challenges. Am J Trop Med Hyg 99(2):256–265. https://doi.org/10.4269/ajtmh.17-0889

    Article  PubMed  PubMed Central  Google Scholar 

  5. Minja DT, Schmiegelow C, Mmbando B, Bostrom S, Oesterholt M, Magistrado P, Pehrson C, John D, Salanti A, Luty AJ, Lemnge M, Theander T, Lusingu J, Alifrangis M (2013) Plasmodium falciparum mutant haplotype infection during pregnancy associated with reduced birthweight, Tanzania. Emerg Infect Dis 19(9):1446–1454. https://doi.org/10.3201/eid1909.130133

    Article  PubMed Central  Google Scholar 

  6. Nag S, Dalgaard MD, Kofoed P-E, Ursing J, Crespo M, Andersen LOB, Aarestrup FM, Lund O, Alifrangis M (2017) High throughput resistance profiling of Plasmodium falciparum infections based on custom dual indexing and Illumina next generation sequencing-technology. Sci Rep 7(1):2398. https://doi.org/10.1038/s41598-017-02724-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Guthrie R, Susi A (1963 and 1998) A simple phenylalanine method for detecting phenylketonuria in large populations of newborn infants. Pediatrics 32:318–343

    Google Scholar 

  8. Kain KC, Lanar DE (1991) Determination of genetic variation within Plasmodium falciparum by using enzymatically amplified DNA from filter paper disks impregnated with whole blood. J Clin Microbiol 29(6):1171–1174. https://doi.org/10.1128/jcm.29.6.1171-1174.1991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Nag S, Kofoed P-E, Ursing J, Lemvigh CK, Allesøe RL, Rodrigues A, Svendsen CA, Jensen JD, Alifrangis M, Lund O, Aarestrup FM (2018) Direct whole-genome sequencing of Plasmodium falciparum specimens from dried erythrocyte spots. Malar J 17(1):91. https://doi.org/10.1186/s12936-018-2232-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Oyola SO, Ariani CV, Hamilton WL, Kekre M, Amenga-Etego LN, Ghansah A, Rutledge GG, Redmond S, Manske M, Jyothi D, Jacob CG, Otto TD, Rockett K, Newbold CI, Berriman M, Kwiatkowski DP (2016) Whole genome sequencing of Plasmodium falciparum from dried blood spots using selective whole genome amplification. Malar J 15(1):597. https://doi.org/10.1186/s12936-016-1641-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Winkel BG, Hollegaard MV, Olesen MS, Svendsen JH, Haunsø S, Hougaard DM, Tfelt-Hansen J (2011) Whole-genome amplified DNA from stored dried blood spots is reliable in high resolution melting curve and sequencing analysis. BMC Med Genet 12(1):22. https://doi.org/10.1186/1471-2350-12-22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hjort L, Lykke Møller S, Minja D, Msemo O, Nielsen BB, Lund Christensen D, Theander T, Nielsen K, Larsen LG, Grunnet LG, Groop L, Prasad R, Lusingu J, Schmiegelow C, Bygbjerg IC (2019) FOETAL for NCD—FOetal exposure and epidemiological transitions: the role of anaemia in early life for non-communicable diseases in later life: a prospective preconception study in rural Tanzania. BMJ Open 9(5):e024861. https://doi.org/10.1136/bmjopen-2018-024861

    Article  PubMed  PubMed Central  Google Scholar 

  13. Caggana M, Conroy JM, Pass KA (1998) Rapid, efficient method for multiplex amplification from filter paper. Hum Mutat 11(5):404–409. https://doi.org/10.1002/(sici)1098-1004(1998)11:5<404::Aid-humu8>3.0.Co;2-s

    Article  CAS  PubMed  Google Scholar 

  14. Adam BW, Chafin DL, De Jesús VR (2013) Stabilities of hemoglobins A and S in dried blood spots stored under controlled conditions. Clin Biochem 46(12):1089–1092. https://doi.org/10.1016/j.clinbiochem.2013.05.043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bereczky S, Mårtensson A, Gil JP, Färnert A (2005) Short report: rapid DNA extraction from archive blood spots on filter paper for genotyping of Plasmodium falciparum. Am J Trop Med Hyg 72(3):249–251

    Article  Google Scholar 

  16. Chaorattanakawee S, Natalang O, Hananantachai H, Nacher M, Brockman A, Krudsood S, Looareesuwan S, Patarapotikul J (2003) Storage duration and polymerase chain reaction detection of Plasmodium falciparum from blood spots on filter paper. Am J Trop Med Hyg 69(1):42–44

    Article  CAS  Google Scholar 

  17. Färnert A, Arez AP, Correia AT, Björkman A, Snounou G, Do Rosário V (1999) Sampling and storage of blood and the detection of malaria parasites by polymerase chain reaction. Trans R Soc Trop Med Hyg 93(1):50–53. https://doi.org/10.1016/s0035-9203(99)90177-3

    Article  PubMed  Google Scholar 

  18. Hwang J, Jaroensuk J, Leimanis ML, Russell B, McGready R, Day N, Snounou G, Nosten F, Imwong M (2012) Long-term storage limits PCR-based analyses of malaria parasites in archival dried blood spots. Malar J 11(1):339. https://doi.org/10.1186/1475-2875-11-339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Schwartz A, Baidjoe A, Rosenthal PJ, Bousema T, Greenhouse B, Dorsey G (2015) The effect of storage and extraction methods on amplification of Plasmodium falciparum DNA from dried blood spots. Am J Trop Med Hyg 92(5):922–925. https://doi.org/10.4269/ajtmh.14-0602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. SjöHolm MIL, Dillner J, Carlson J (2007) Assessing quality and functionality of DNA from fresh and archival dried blood spots and recommendations for quality control guidelines. Clin Chem 53(8):1401–1407. https://doi.org/10.1373/clinchem.2007.087510

    Article  CAS  PubMed  Google Scholar 

  21. Amellal B, Katlama C, Calvez V (2007) Evaluation of the use of dried spots and of different storage conditions of plasma for HIV-1 RNA quantification. HIV Med 8(6):396–400. https://doi.org/10.1111/j.1468-1293.2007.00484.x

    Article  CAS  PubMed  Google Scholar 

  22. Canier L, Chea N, Ken M, Bosman P, Khim N, Etienne W, Ménard D, Pannus P, Khean C, Alipon S, Char MC, Kim S, Loch K, Stassijns J, De Smet M, Eam R, Nackers F, Kindermans J-M (2015) Malaria PCR detection in Cambodian low-transmission settings: dried blood spots versus venous blood samples. Am J Trop Med Hyg 92(3):573–577. https://doi.org/10.4269/ajtmh.14-0614

    Article  PubMed  PubMed Central  Google Scholar 

  23. Cox-Singh J, Mahayet S, Abdullah MS, Singh B (1997) Increased sensitivity of malaria detection by nested polymerase chain reaction using simple sampling and DNA extraction. Int J Parasitol 27(12):1575–1577. https://doi.org/10.1016/s0020-7519(97)00147-1

    Article  CAS  PubMed  Google Scholar 

  24. Huang S-Z, Zhou X-D, Zhu H, Ren Z-R, Zeng Y-T (1990) Detection of β-thalassemia mutations in the Chinese using amplified DNA from dried blood specimens. Hum Genet 84(2):129–131. https://doi.org/10.1007/bf00208926

    Article  CAS  PubMed  Google Scholar 

  25. Karthipan SN, George E, Jameela S, Lim WF, Teh LK, Lee TY, Chin VK, Lai MI (2011) An assessment of three noncommercial DNA extraction methods from dried blood spots for beta-thalassaemia mutation identification. Int J Lab Hematol 33(5):540–544. https://doi.org/10.1111/j.1751-553x.2011.01304.x

    Article  CAS  PubMed  Google Scholar 

  26. Panda BB, Pradhan N, Hazra RK (2019) Comparative analysis of three methods from dried blood spots for expeditious DNA extraction from mosquitoes; suitable for PCR based techniques. Mol Biol Rep 46(1):151–160. https://doi.org/10.1007/s11033-018-4456-5

    Article  CAS  PubMed  Google Scholar 

  27. Simon N, Shallat J, Williams Wietzikoski C, Harrington WE (2020) Optimization of Chelex 100 resin-based extraction of genomic DNA from dried blood spots. Biol Method Protoc 5(1):bpaa009. https://doi.org/10.1093/biomethods/bpaa009

    Article  CAS  Google Scholar 

  28. Strøm GEA, Tellevik MG, Hanevik K, Langeland N, Blomberg B (2014) Comparison of four methods for extracting DNA from dried blood on filter paper for PCR targeting the mitochondrial Plasmodium genome. Trans R Soc Trop Med Hyg 108(8):488–494. https://doi.org/10.1093/trstmh/tru084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhou H, Hickford JGH, Fang Q (2006) A two-step procedure for extracting genomic DNA from dried blood spots on filter paper for polymerase chain reaction amplification. Anal Biochem 354(1):159–161. https://doi.org/10.1016/j.ab.2006.03.042

    Article  CAS  PubMed  Google Scholar 

  30. Panda BB, Meher AS, Hazra RK (2019) Comparison between different methods of DNA isolation from dried blood spots for determination of malaria to determine specificity and cost effectiveness. J Parasit Dis 43(3):337–342. https://doi.org/10.1007/s12639-019-01136-0

    Article  PubMed  PubMed Central  Google Scholar 

  31. Pattaradilokrat S, Tiyamanee W, Simpalipan P, Kaewthamasorn M, Saiwichai T, Li J, Harnyuttanakorn P (2015) Molecular detection of the avian malaria parasite Plasmodium gallinaceum in Thailand. Vet Parasitol 210(1–2):1–9. https://doi.org/10.1016/j.vetpar.2015.03.023

    Article  CAS  PubMed  Google Scholar 

  32. Walsh PS, Metzger DA, Higushi R (2013) Chelex 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. BioTechniques 10(4): 506-13 (April 1991). BioTechniques 54(3):134–139. https://doi.org/10.2144/000114018

    Article  CAS  PubMed  Google Scholar 

  33. Singh UA, Kumari M, Iyengar S (2018) Method for improving the quality of genomic DNA obtained from minute quantities of tissue and blood samples using Chelex 100 resin. Biol Proc Online 20(1):12. https://doi.org/10.1186/s12575-018-0077-6

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helle Hansson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Hansson, H., Saidi, Q., Alifrangis, M. (2022). Preservation and Extraction of Malaria Parasite DNA from Dried Blood Spots. In: Jensen, A.T.R., Hviid, L. (eds) Malaria Immunology. Methods in Molecular Biology, vol 2470. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2189-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2189-9_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2188-2

  • Online ISBN: 978-1-0716-2189-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics