Skip to main content
Book cover

C. elegans pp 283–292Cite as

Isolating Caenorhabditis elegans from the Natural Habitat

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2468))

Abstract

Wild populations of the model organism C. elegans represent a valuable resource, allowing for genetic characterization underlying natural phenotypic variation. Here we provide a simple protocol on how to sample and rapidly identify C. elegans wild isolates. We outline how to find suitable habitats and organic substrates, followed by describing isolation and identification of C. elegans live cultures based on easily recognizable morphological characteristics, molecular barcodes, and mating tests. This protocol uses standard laboratory equipment and requires little prior knowledge of C. elegans biology.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Gaertner BE, Phillips PC (2010) Caenorhabditis elegans as a platform for molecular quantitative genetics and the systems biology of natural variation. Genet Res 92:331–348

    Article  CAS  Google Scholar 

  2. Frézal L, Félix MA (2015) C. elegans outside the petri dish. elife 4:e05849

    Article  PubMed Central  Google Scholar 

  3. Félix MA, Braendle C (2010) The natural history of Caenorhabditis elegans. Curr Biol 20:R965–R969

    Article  PubMed  Google Scholar 

  4. Braendle C, Teotonio H (2015) Caenorhabditis nematodes as model organisms to study trait variation and its evolution. Worm 4:e1021109

    Article  PubMed  PubMed Central  Google Scholar 

  5. Cook DE, Zdraljevic S, Roberts JP et al (2017) CeNDR, the Caenorhabditis elegans natural diversity resource. Nucleic Acids Res 45:D650–D657

    Article  CAS  PubMed  Google Scholar 

  6. Crombie T, Zdraljevic S, Cook D et al (2019) Deep sampling of Hawaiian Caenorhabditis elegans reveals high genetic diversity and admixture with global populations. elife 8:e50465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sterken MG, Snoek LB, Kammenga JE et al (2015) The laboratory domestication of Caenorhabditis elegans. Trends Genet 31:224–231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Andersen EC, Shimko TC, Crissman JR et al (2015) A powerful new quantitative genetics platform, combining Caenorhabditis elegans high-throughput fitness assays with a large collection of recombinant strains. G3 (Bethesda) 5:911–920

    Article  Google Scholar 

  9. Brady SC, Zdraljevic S, Bisaga KW et al (2019) A novel gene underlies bleomycin-response variation in Caenorhabditis elegans. Genetics 212:1453–1468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Frézal L, Demoinet E, Braendle C et al (2018) Natural genetic variation in a multigenerational phenotype in C. elegans. Curr Biol 28:2588–2596

    Article  PubMed  PubMed Central  Google Scholar 

  11. Billard B, Vigne P, Braendle C (2020) A natural mutational event uncovers a life history trade-off via hormonal pleiotropy. Curr Biol 30:4142–4154

    Article  CAS  PubMed  Google Scholar 

  12. Lee D, Zdraljevic S, Cook DE et al (2019) Selection and gene flow shape niche-associated variation in pheromone response. Nat Ecol Evol 3:1455–1463

    Article  PubMed  PubMed Central  Google Scholar 

  13. Petersen C, Dirksen P, Prahl S et al (2014) The prevalence of Caenorhabditis elegans across 1.5 years in selected North German locations: the importance of substrate type, abiotic parameters, and Caenorhabditis competitors. BMC Ecol 14:4

    Article  PubMed  PubMed Central  Google Scholar 

  14. Caswell-Chen EP, Chen J, Lewis EE et al (2005) Revising the standard wisdom of C. elegans natural history: ecology of longevity. Sci Aging Knowl Environ 40:pe30

    Google Scholar 

  15. Brophy T, Mc Donnell RJ, Howe DK et al (2020) Nematodes associated with terrestrial slugs in the Edmonton region of Alberta, Canada. J Helminthol 94:e200

    Article  CAS  PubMed  Google Scholar 

  16. Abdul Kader N, Cote MG (1996) Isolement, identification et caractérisation de souches québécoises du nématode Caenorhabditis elegans. Fundam Appl Nematol 19:381–389

    Google Scholar 

  17. Maupas E (1900) Modes and forms of reproduction of nematods. Archives de Zoologie Expérimentale et Générale 8:463–624

    Google Scholar 

  18. Kiontke KC, Félix MA, Ailion M et al (2011) A phylogeny and molecular barcodes for Caenorhabditis, with numerous new species from rotting fruits. BMC Evol Biol 11:339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Stevens L, Félix MA, Beltran T et al (2019) Comparative genomics of 10 new Caenorhabditis species. Evol Lett 3:217–236

    Article  PubMed  PubMed Central  Google Scholar 

  20. Dolgin ES, Félix MA, Cutter AD (2008) Hakuna Nematoda: genetic and phenotypic diversity in African isolates of Caenorhabditis elegans and C. briggsae. Heredity 100:304–315

    Article  CAS  PubMed  Google Scholar 

  21. Petrella LN (2014) Natural variants of C. elegans demonstrate defects in both sperm function and oogenesis at elevated temperatures. PLoS One 9:e112377

    Article  PubMed  PubMed Central  Google Scholar 

  22. Poullet N, Vielle A, Gimond C et al (2015) Evolutionarily divergent thermal sensitivity of germline development and fertility in hermaphroditic Caenorhabditis nematodes. Evol Dev 17:380–397

    Article  PubMed  Google Scholar 

  23. Barrière A, Félix MA (2005) High local genetic diversity and low outcrossing rate in Caenorhabditis elegans natural populations. Curr Biol 15:1176–1184

    Article  PubMed  Google Scholar 

  24. Barrière A, Félix MA (2007) Temporal dynamics and linkage disequilibrium in natural Caenorhabditis elegans populations. Genetics 176:999–1011

    Article  PubMed  PubMed Central  Google Scholar 

  25. Félix MA, Duveau F (2012) Population dynamics and habitat sharing of natural populations of Caenorhabditis elegans and C. briggsae. BMC Biol 10:59

    Article  PubMed  PubMed Central  Google Scholar 

  26. Haber M, Schüngel M, Putz A et al (2005) Evolutionary history of Caenorhabditis elegans inferred from microsatellites: evidence for spatial and temporal genetic differentiation and the occurrence of outbreeding. Mol Biol Evol 22:160–173

    Article  CAS  PubMed  Google Scholar 

  27. Sivasundar A, Hey J (2005) Sampling from natural populations with RNAI reveals high outcrossing and population structure in Caenorhabditis elegans. Curr Biol 15:1598–1602

    Article  CAS  PubMed  Google Scholar 

  28. Richaud A, Zhang G, Lee D et al (2018) The local coexistence pattern of selfing genotypes in Caenorhabditis elegans natural metapopulations. Genetics 208:807–821

    Article  CAS  PubMed  Google Scholar 

  29. Félix MA, Jovelin R, Ferrari C et al (2013) Species richness, distribution and genetic diversity of Caenorhabditis nematodes in a remote tropical rainforest. BMC Evol Biol 13:10

    Article  PubMed  PubMed Central  Google Scholar 

  30. Petersen C, Saebelfeld M, Barbosa C et al (2015) Ten years of life in compost: temporal and spatial variation of North German Caenorhabditis elegans populations. Ecol Evol 5:3250–3263

    Article  PubMed  PubMed Central  Google Scholar 

  31. Ferrari C, Salle R, Callemeyn-Torre N et al (2017) Ephemeral-habitat colonization and neotropical species richness. BMC Ecol 17:43

    Article  PubMed  PubMed Central  Google Scholar 

  32. Andersen EC, Gerke JP, Shapiro JA et al (2012) Chromosome-scale selective sweeps shape Caenorhabditis elegans genomic diversity. Nat Genet 44:285–290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Barrière A, Félix MA (2014) Isolation of C. elegans and related nematodes. WormBook 1–19

    Google Scholar 

  34. Félix MA, Ailion M, Hsu JC et al (2018) Pristionchus nematodes occur frequently in diverse rotting vegetal substrates and are not exclusively necromenic, while Panagrellus redivivoides is found specifically in rotting fruits. PLoS One 13:e0200851

    Article  PubMed  PubMed Central  Google Scholar 

  35. Kiontke K, Sudhaus W (2006) Ecology of Caenorhabditis species. WormBook 1–14

    Google Scholar 

  36. Stiernagle T (2006) Maintenance of C. elegans. WormBook 1–11

    Google Scholar 

  37. Schulenburg H, Félix M (2017) The natural biotic environment of Caenorhabditis elegans. Genetics 206:55–86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Chen J, Lewis EE, Carey JR et al (2006) The ecology and biodemography of Caenorhabditis elegans. Exp Gerontol 41:1059–1065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Félix MA, Braendle C, Cutter AD et al (2014) A streamlined system for species diagnosis in Caenorhabditis (Nematoda: Rhabditidae) with name designations for 15 distinct biological species. PLoS One 9:e94723

    Article  PubMed  PubMed Central  Google Scholar 

  40. Chiang JTA, Steciuk M, Shtonda B et al (2006) Evolution of pharyngeal behaviors and neuronal functions in free-living soil nematodes. J Exp Biol 209:1859–1873

    Article  PubMed  Google Scholar 

  41. Sudhaus W, Fitch D (2001) Comparative studies on the phylogeny and systematics of the Rhabditidae (nematoda). J Nematol 33:1–70

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Sudhaus W, Kiontke K (1996) Phylogeny of Rhabditis subgenus Caenorhabditis (Rhabditidae, Nematoda). J Zoo Syst Evol Res 34:217–233

    Article  Google Scholar 

Download references

Acknowledgments

This protocol makes use of diverse contributions from the worm community and is primarily based on Caenorhabditis isolation methods established by Antoine Barrière and Marie-Anne Félix. Our research is financed by the Centre National de la Recherche Scientifique (CNRS) and Université Côte d’Azur, Nice, France.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Braendle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Gimond, C., Poullet, N., Braendle, C. (2022). Isolating Caenorhabditis elegans from the Natural Habitat. In: Haspel, G., Hart, A.C. (eds) C. elegans. Methods in Molecular Biology, vol 2468. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2181-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2181-3_15

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2180-6

  • Online ISBN: 978-1-0716-2181-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics