Skip to main content

Immunohistochemical Detection of SARS-CoV-2 Antigens by Single and Multiple Immunohistochemistry

  • Protocol
  • First Online:
SARS-CoV-2

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2452))

  • 1180 Accesses

Abstract

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection can be demonstrated in tissue sections by immunohistochemistry (IHC), which has the power to localize in bright field specific antigens in cells and tissues. The use of double or triple immunostains is capable of highlighting which cells are infected and/or the relationship of infected cell with other cells and tissue structures. In addition, immunoenzymatic multi-staining permits the simultaneous identification, localization, and enumeration of different cellular epitopes. Moreover, this method improves analytical precision, decreasing the time required for morphometric quantification, maximizing the information obtained from a single slide of paraffin-embedded tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Molina-Ruiz AM, Santonja C, Rütten A et al (2015) Immunohistochemistry in the diagnosis of cutaneous viral infections--part I. Cutaneous viral infections by herpesviruses and papillomaviruses. Am J Dermatopathol 37(1):1–14. https://doi.org/10.1097/DAD.0000000000000203

    Article  PubMed  Google Scholar 

  2. Molina-Ruiz AM, Santonja C, Rütten A et al (2015) Immunohistochemistry in the diagnosis of cutaneous viral infections- part II: cutaneous viral infections by parvoviruses, poxviruses, paramyxoviridae, picornaviridae, retroviruses and filoviruses. Am J Dermatopathol 37(2):93–106. https://doi.org/10.1097/DAD.0000000000000200

    Article  PubMed  Google Scholar 

  3. Molina-Ruiz AM, Cerroni L, Kutzner H et al (2015) Immunohistochemistry in the diagnosis of cutaneous bacterial infections. Am J Dermatopathol 37(3):179–193. https://doi.org/10.1097/DAD.0000000000000227

    Article  PubMed  Google Scholar 

  4. Schwartz DA, Baldewijns M, Benachi A et al (2020) Chronic histiocytic intervillositis with trophoblast necrosis are risk factors associated with placental infection from coronavirus disease 2019 (COVID-19) and intrauterine maternal-fetal severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission in liveborn and stillborn infants. Arch Pathol Lab Med 145(5):517–528. https://doi.org/10.5858/arpa.2020-0771-SA

    Article  Google Scholar 

  5. Hecht JL, Quade B, Deshpande V et al (2020) SARS-CoV-2 can infect the placenta and is not associated with specific placental histopathology: a series of 19 placentas from COVID-19-positive mothers. Mod Pathol 33(11):2092–2103. https://doi.org/10.1038/s41379-020-0639-4

    Article  CAS  PubMed  Google Scholar 

  6. Sauter JL, Baine MK, Butnor KJ et al (2020) Insights into pathogenesis of fatal COVID-19 pneumonia from histopathology with immunohistochemical and viral RNA studies. Histopathology 77(6):915–925. https://doi.org/10.1111/his.14201

    Article  PubMed  Google Scholar 

  7. Martines RB, Ritter JM, Matkovic E et al (2020) Pathology and pathogenesis of SARS-CoV-2 associated with fatal coronavirus disease, United States. Emerg Infect Dis 26(9):2005–2015. https://doi.org/10.3201/eid2609.202095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Remmelink M, De Mendonça R, D'Haene N et al (2020) Unspecific post-mortem findings despite multiorgan viral spread in COVID-19 patients. Crit Care 24(1):495. https://doi.org/10.1186/s13054-020-03218-5

    Article  PubMed  PubMed Central  Google Scholar 

  9. Colmenero I, Santonja C, Alonso-Riaño M et al (2020) SARS-CoV-2 endothelial infection causes COVID-19 chilblains: histopathological, immunohistochemical and ultrastructural study of seven paediatric cases. Br J Dermatol 183(4):729–737. https://doi.org/10.1111/bjd.19327

    Article  CAS  PubMed  Google Scholar 

  10. Carossino M, Ip HS, Richt JA (2020) Detection of SARS-CoV-2 by RNAscope® in situ hybridization and immunohistochemistry techniques. Arch Virol 165(10):2373–2377. https://doi.org/10.1007/s00705-020-04737-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Liu J, Babka AM, Kearney BJ et al (2020) Molecular detection of SARS-CoV-2 in formalin-fixed, paraffin-embedded specimens. JCI. Insight 5(12):e139042. https://doi.org/10.1172/jci.insight.139042

    Article  Google Scholar 

  12. Best Rocha A, Stroberg E, Barton LM et al (2020) Detection of SARS-CoV-2 in formalin-fixed paraffin-embedded tissue sections using commercially available reagents. Lab Investig 100(11):1485–1489. https://doi.org/10.1038/s41374-020-0464-x

    Article  CAS  PubMed  Google Scholar 

  13. Massoth LR, Desai N, Szabolcs A et al (2021) Comparison of RNA in situ hybridization and immunohistochemistry techniques for the detection and localization of SARS-CoV-2 in human tissues. Am J Surg Pathol 45(1):14–24. https://doi.org/10.1097/PAS.0000000000001563

    Article  PubMed  Google Scholar 

  14. Schaefer IM, Padera RF, Solomon IH et al (2020) In situ detection of SARS-CoV-2 in lungs and airways of patients with COVID-19. Mod Pathol 33(11):2104–2114. https://doi.org/10.1038/s41379-020-0595-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Facchetti F, Bugatti M, Drera E et al (2020) SARS-CoV2 vertical transmission with adverse effects on the newborn revealed through integrated immunohistochemical, electron microscopy and molecular analyses of placenta. EBioMedicine 59:102951. https://doi.org/10.1016/j.ebiom.2020.102951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Krenacs T, Krenacs L (1994) Immunogoldsilver staining (IGSS) for immunoelectron microscopy and in multiple detection affinity cytochemistry. In: Gu J, Hacker GW (eds) Modern methods in analytical morphology. Plenurn, New York, pp 225–251

    Chapter  Google Scholar 

  17. Krenacs T, Krenacs L, Raffeld M (2010) Multiple antigen immunostaining procedures. Methods Mol Biol 588:281–300. https://doi.org/10.1007/978-1-59745-324-0_28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Vermi W, Lonardi S, Morassi M et al (2009) Cutaneous distribution of plasmacytoid dendritic cells in lupus erythematosus. Selective tropism at the site of epithelial apoptotic damage. Immunobiology 214(9–10):877–886. https://doi.org/10.1016/j.imbio.2009.06.013

    Article  CAS  PubMed  Google Scholar 

  19. Krenacs T, Uda H, Tanaka S (1991) One-step double immunolabeling of mouse interdigitating reticular cells: simultaneous application of preformed complexes of monoclonal rat antibody M J -8 with horseradish peroxidase-linked anti-rat immunoglobulin and of monoclonal mouse anti Ia antibody with alkaline phosphatase coupled anti-mouse immunoglobulins. J Histochem Cytochem 39:1719–1723

    Article  CAS  Google Scholar 

  20. Morris TJ, Stanley EF (2003) A simple method for immunocytochemical staining with multiple rabbit polyclonal antibodies. J Neurosci Methods 127:149–155. https://doi.org/10.1016/s0165-0270(03)00119-5

    Article  CAS  PubMed  Google Scholar 

  21. Negoescu A, Labat-Moleur F, Lorimier P et al (1994) F(ab) secondary antibodies: a general method for double immunolabeling with primary antisera from the same species. Efficiency control by chemiluminescence. J Histochem Cytochem 42(3):433–437. https://doi.org/10.1177/42.3.7508473

    Article  CAS  PubMed  Google Scholar 

  22. Osman TA, Øijordsbakken G, Costea DE et al (2013) Successful triple immunoenzymatic method employing primary antibodies from same species and same immunoglobulin subclass. Eur J Histochem 57(3):e22. https://doi.org/10.4081/ejh.2013.e22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sternberger LA, Joseph SA (1979) The unlabeled antibody method. Contrasting color staining of paired pituitary hormones without antibody removal. J Histochem Cytochem 27:1424–1429. https://doi.org/10.1177/27.11.92498

    Article  CAS  PubMed  Google Scholar 

  24. Krenacs T, Laszik Z, Dobo E (1989) Application of immunogold-silver staining and immunoenzymatic methods in multiple labeling of human pancreatic Langerhans islet cells. Acta Histochem 85:79–85. https://doi.org/10.1016/S0065-1281(89)80102-3

    Article  CAS  PubMed  Google Scholar 

  25. Lan HY, Mu W, Nikolic-Paterson DJ et al (1995) A novel, simple, reliable, and sensitive method for multiple immunoenzyme staining: use of microwave oven heating to block antibody crossreactivity and retrieve antigens. J Histochem Cytochem 43:97–102. https://doi.org/10.1177/43.1.7822770

    Article  CAS  PubMed  Google Scholar 

  26. Chan A, Matias MA, Farah CS (2011) A novel and practical method using HRPpolymer conjugate and microwave treatment for visualization of 2 antigens raised from the same or different species in paraffin-embedded tissues. Appl Immunohistochem Mol Morphol 19:376–383. https://doi.org/10.1097/PAI.0b013e31820251c0

    Article  CAS  PubMed  Google Scholar 

  27. Vermeer AW, Norde W (2000) The thermal stability of immunoglobulin: unfolding and aggregation of a multi-domain protein. Biophys J 78(1):394–404. https://doi.org/10.1016/S0006-3495(00)76602-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Dominguez E, Perez MD, Calvo M (1997) Effect of heat treatment on the antigen-binding activity of anti-peroxidase immunoglobulins in bovine colostrum. J Dairy Sci 80:3182–3187. https://doi.org/10.3168/jds.S0022-0302(97)76290-8

    Article  CAS  PubMed  Google Scholar 

  29. Tornehave D, Hougaard DM, Larsson L (2000) Microwaving for double indirect immunofluorescence with primary antibodies from the same species and for staining of mouse tissues with mouse monoclonal antibodies. Histochem Cell Biol 113:19–23. https://doi.org/10.1007/s004180050002

    Article  CAS  PubMed  Google Scholar 

  30. Nakata T, Suzuki N (2012) Chromogen-based immunohistochemical method for elucidation of the coexpression of two antigens using antibodies from the same species. J Histochem Cytochem 60(8):611–619. https://doi.org/10.1369/0022155412449348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Giurisato E, Lonardi S, Telfer B et al (2020) Extracellular-regulated protein kinase 5-mediated control of p21 expression promotes macrophage proliferation associated with tumor growth and metastasis. Cancer Res 80(16):3319–3330. https://doi.org/10.1158/0008-5472.CAN-19-2416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gatta LB, Melocchi L, Bugatti M et al (2019) Hyper-activation of STAT3 sustains progression of non-papillary basal-type bladder cancer via FOSL1 regulome. Cancers (Basel) 11(9):1219. https://doi.org/10.3390/cancers11091219

    Article  CAS  Google Scholar 

  33. Glass G, Papin JA, Mandell JW (2009) SIMPLE: a sequential immunoperoxidase labeling and erasing method. J Histochem Cytochem 57(10):899–905. https://doi.org/10.1369/jhc.2009.953612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gendusa R, Scalia CR, Buscone S et al (2014) Elution of high-affinity (>10-9 KD) antibodies from tissue sections: clues to the molecular mechanism and use in sequential immunostaining. J Histochem Cytochem 62(7):519–531. https://doi.org/10.1369/0022155414536732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Taylor CR (2014) Immunohistochemistry in surgical pathology: principles and practice. Methods Mol Biol 1180:81–109. https://doi.org/10.1007/978-1-4939-1050-2_5

    Article  CAS  PubMed  Google Scholar 

  36. Bulman AS, Heyderman E (1981) Alkaline phosphatase for immunocytochemical labelling: problems with endogenous enzyme activity. J Clin Pathol 34(12):1349–1351. https://doi.org/10.1136/jcp.34.12.1349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

SL and AV are supported by Fondazione Beretta (Brescia). Silvia Lonardi and Mattia Bugatti contributed equally to this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mattia Bugatti or Fabio Facchetti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Lonardi, S., Bugatti, M., Valzelli, A., Facchetti, F. (2022). Immunohistochemical Detection of SARS-CoV-2 Antigens by Single and Multiple Immunohistochemistry . In: Chu, J.J.H., Ahidjo, B.A., Mok, C.K. (eds) SARS-CoV-2. Methods in Molecular Biology, vol 2452. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2111-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2111-0_17

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2110-3

  • Online ISBN: 978-1-0716-2111-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics