Skip to main content

The Negative Impact of Cancer Cell Nitric Oxide on Photodynamic Therapy

  • Protocol
  • First Online:
Photodynamic Therapy

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2451))

  • 983 Accesses

Abstract

Numerous studies have shown that low-flux nitric oxide (NO) in tumors produced mainly by inducible nitric oxide synthase (iNOS/NOS2) can signal for angiogenesis, inhibition of apoptosis, and promotion of cell growth, migration, and invasion. Studies in the authors’ laboratory have revealed that iNOS-derived NO in various cancer cell types elicits resistance to cytotoxic photodynamic therapy (PDT) and moreover endows PDT-surviving cells with more aggressive proliferation and migration/invasion. In this chapter, we describe how cancer cell iNOS/NO in vitro can be monitored in different PDT model systems (e.g., a targeted cell-bystander cell model) and how pharmacologic interference with basal and PDT-upregulated iNOS/NO can significantly improve PDT outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dougherty TJ, Gomer CJ, Henderson BW, Jori G, Kessel D, Korbelik M, Moan J, Peng J (1998) Photodynamic therapy. J Natl Cancer Inst 90:889–905

    Article  CAS  PubMed  Google Scholar 

  2. Agostinis P, Berg K, Cengel KA, Foster TH, Girotti AW, Gollnick SO et al (2011) Photodynamic therapy of cancer: an update. CA Cancer J Clin 61:250–281

    Article  PubMed  PubMed Central  Google Scholar 

  3. Henderson BW, Sitnik-Busch TM, Vaughan LA (1999) Potentiation of photodynamic therapy antitumor activity in mice by nitric oxide synthase inhibition is fluence rate dependent. Photochem Photobiol 70:64–71

    Article  CAS  PubMed  Google Scholar 

  4. Korbelik M, Parkins CS, Shibuya H, Cecic I, Stratford MR, Chaplin DJ (2000) Nitric oxide production by tumour tissue: impact on the response to photodynamic therapy. Br J Cancer 82:1835–1843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bhowmick R, Girotti AW (2010) Cytoprotective induction of nitric oxide synthase in a cellular model of 5-aminolevulinic acid-based photodynamic therapy. Free Radic Biol Med 48:1296–1301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bhowmick R, Girotti AW (2011) Rapid upregulation of cytoprotective nitric oxide in breast tumor cells subjected to a photodynamic therapy-like oxidative challenge. Photochem Photobiol 87:378–386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bhowmick R, Girotti AW (2013) Cytoprotective signaling associated with nitric oxide upregulation in tumor cells subjected to photodynamic therapy-like oxidative stress. Free Radic Biol Med 57:39–48

    Article  CAS  PubMed  Google Scholar 

  8. Bhowmick R, Girotti AW (2014) Pro-survival and pro-growth effects of stress-induced nitric oxide in a prostate cancer photodynamic therapy model. Cancer Lett 343:115–122

    Article  CAS  PubMed  Google Scholar 

  9. Fahey JM, Girotti AW (2015) Accelerated migration and invasion of prostate cancer cells after a photodynamic therapy-like challenge: role of nitric oxide. Nitric Oxide 49:47–55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Girotti AW, Fahey JM, Korytowski W (2016) Multiple means by which nitric oxide can antagonize photodynamic therapy. Curr Med Chem 23:2754–2769

    Article  CAS  PubMed  Google Scholar 

  11. Girotti AW (2016) Modulation of the anti-tumor efficacy of photodynamic therapy by nitric oxide. Cancers (Basel) 8(10):E96

    Article  Google Scholar 

  12. Fahey JM, Girotti AW (2017) Nitric oxide-mediated resistance to photodynamic therapy in a human breast tumor xenograft model: improved outcome with NOS2 inhibitors. Nitric Oxide 62:52–61

    Article  CAS  PubMed  Google Scholar 

  13. Bazak J, Fahey JM, Wawak K, Korytowski W, Girotti AW (2017) Enhanced aggressiveness of bystander cells in an anti-tumor photodynamic therapy model: role of nitric oxide produced by targeted cells. Free Radic Biol Med 102:111–121

    Article  CAS  PubMed  Google Scholar 

  14. Bazak J, Fahey JM, Wawak K, Korytowski W, Girotti AW (2017) Bystander effects of nitric oxide in anti-tumor photodynamic therapy. Cancer Cell Microenviron 4(1):e1511. https://doi.org/10.14800/ccm.1511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Garg AD, Krysko DV, Vandenabeele P, Agostinis P (2011) DAMPs and PDT-mediated photo-oxidative stress: exploring the unknown. Photochem Photobiol Sci 10:670–680

    Article  CAS  PubMed  Google Scholar 

  16. Nagano T (2009) Bioimaging probes for reactive oxygen species and reactive nitrogen species. J Clin Biochem Nutr 45:111–124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lancaster JR Jr (2010) The use of diaminofluorescein for nitric oxide detection: conceptual and methodological distinction between NO and nitrosation. Free Radic Biol Med 49:1145

    Article  CAS  PubMed  Google Scholar 

  18. Thomas DD, Liu X, Kantrow SP, Lancaster JR Jr (2001) The biological lifetime of nitric oxide: implications for the perivascular dynamics of NO and O2. Proc Natl Acad Sci U S A 98:355–360

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Studies in the authors’ laboratory were supported by NIH/NCI Grant CA70823, a grant from the Wisconsin Breast Cancer Showhouse for a Cure, and a grant from the Advancing a Healthier Wisconsin Endowment. Jerzy Bazak and Witold Korytowski at the Jagiellonian University, Krakow, Poland, are gratefully acknowledged for their groundbreaking contributions to the PDT bystander studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Albert W. Girotti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Fahey, J.M., Girotti, A.W. (2022). The Negative Impact of Cancer Cell Nitric Oxide on Photodynamic Therapy. In: Broekgaarden, M., Zhang, H., Korbelik, M., Hamblin, M.R., Heger, M. (eds) Photodynamic Therapy. Methods in Molecular Biology, vol 2451. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2099-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2099-1_2

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2098-4

  • Online ISBN: 978-1-0716-2099-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics