Skip to main content

Photodynamic Treatments for Disseminated Cancer Metastases Using Fiber-Optic Technologies

  • Protocol
  • First Online:
Photodynamic Therapy

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2451))

  • 978 Accesses

Abstract

Tumor-targeted and -activatable photosensitizer delivery platforms are creating new opportunities to develop photodynamic therapy (PDT) of metastatic disease. This is possible by confining the activity of the photosensitizing chemical (i.e., the PDT agent) to the tumor in combination with diffuse near-infrared light irradiation for wide-field treatment. This chapter outlines protocols and research tools for preclinical development of light-activated therapies of cancer metastases using advanced-stage ovarian cancer as a model system. We also describe an in vivo molecular imaging approach that uniquely enables tracking intraperitoneal micrometastatic burden and responses to treatment using fluorescence microendoscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Naora H, Montell DJ (2005) Ovarian cancer metastasis: integrating insights from disparate model organisms. Nat Rev Cancer 5:355–366

    Article  CAS  PubMed  Google Scholar 

  2. Bast RC, Hennessy B, Mills GB (2009) The biology of ovarian cancer: new opportunities for translation. Nat Rev Cancer 9:415–428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lengyel E (2010) Ovarian cancer development and metastasis. Am J Pathol 177:1053–1064

    Article  PubMed  PubMed Central  Google Scholar 

  4. Gadducci A, Cosio S, Zola P et al (2007) Surveillance procedures for patients treated for epithelial ovarian cancer: a review of the literature. Int J Gynecol Cancer 17:21–31

    Article  CAS  PubMed  Google Scholar 

  5. Agarwal ML, Clay ME, Harvey EJ et al (1991) Photodynamic therapy induces rapid cell death by apoptosis in L5178Y mouse lymphoma cells. Cancer Res 51:5993–5996

    CAS  PubMed  Google Scholar 

  6. Kessel D, Luo Y (1999) Photodynamic therapy: a mitochondrial inducer of apoptosis. Cell Death Differ 6:28–35

    Article  CAS  PubMed  Google Scholar 

  7. Kessel D (2006) Death pathways associated with photodynamic therapy. Med Laser Appl 21:219–224

    Article  PubMed  PubMed Central  Google Scholar 

  8. Spring BQ, Rizvi I, Xu N et al (2015) The role of photodynamic therapy in overcoming cancer drug resistance. Photochem Photobiol Sci 14:1476–1491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Delaney TF, Sindelar WF, Tochner Z et al (1993) Phase I study of debulking surgery and photodynamic therapy for disseminated intraperitoneal tumors. Int J Radiat Oncol Biol Phys 25:445–457

    Article  CAS  PubMed  Google Scholar 

  10. Hahn SM, Fraker DL, Mick R et al (2006) A phase II trial of intraperitoneal photodynamic therapy for patients with peritoneal carcinomatosis and sarcomatosis. Clin Cancer Res 12:2517–2525

    Article  CAS  PubMed  Google Scholar 

  11. Hahn SM, Putt ME, Metz J et al (2006) Photofrin uptake in the tumor and normal tissues of patients receiving intraperitoneal photodynamic therapy. Clin Cancer Res 12:5464–5470

    Article  CAS  PubMed  Google Scholar 

  12. Cengel KA, Glatstein E, Hahn SM (2007) Intraperitoneal photodynamic therapy. Cancer Treat Res 134:493–514

    CAS  PubMed  Google Scholar 

  13. Celli JP, Spring BQ, Rizvi I et al (2010) Imaging and photodynamic therapy: mechanisms, monitoring, and optimization. Chem Rev 110:2795–2838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lovell JF, Liu TWB, Chen J et al (2010) Activatable photosensitizers for imaging and therapy. Chem Rev 110:2839–2857

    Article  CAS  PubMed  Google Scholar 

  15. Mew D, Wat CK, Towers GH et al (1983) Photoimmunotherapy: treatment of animal tumors with tumor-specific monoclonal antibody-hematoporphyrin conjugates. J Immunol (Baltimore, Md.: 1950) 130:1473–1477

    CAS  Google Scholar 

  16. Oseroff AR, Ohuoha D, Hasan T et al (1986) Antibody-targeted photolysis: selective photodestruction of human T-cell leukemia cells using monoclonal antibody-chlorin e6 conjugates. Proc Natl Acad Sci 83:8744–8748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Goff BA, Bamberg M, Hasan T (1991) Photoimmunotherapy of human ovarian carcinoma cells ex vivo. Cancer Res 51:4762–4767

    CAS  PubMed  Google Scholar 

  18. Van Dongen G, Visser G, Vrouenraets MB (2004) Photosensitizer-antibody conjugates for detection and therapy of cancer. Adv Drug Deliv Rev 56:31–52

    Article  CAS  PubMed  Google Scholar 

  19. Savellano MD (2003) Targeting cells that overexpress the epidermal growth factor receptor with polyethylene glycolated BPD verteporfin photosensitizer immunoconjugates. Photochem Photobiol 77:431–439

    Article  CAS  PubMed  Google Scholar 

  20. Savellano MD, Hasan T (2005) Photochemical targeting of epidermal growth factor receptor: a mechanistic study. Clin Cancer Res 11:1658–1668

    Article  CAS  PubMed  Google Scholar 

  21. Mitsunaga M, Ogawa M, Kosaka N et al (2011) Cancer cell-selective in vivo near infrared photoimmunotherapy targeting specific membrane molecules. Nat Med 17:1685–1691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Abu-Yousif AO, Moor ACE, Zheng X et al (2012) Epidermal growth factor receptor-targeted photosensitizer selectively inhibits EGFR signaling and induces targeted phototoxicity in ovarian cancer cells. Cancer Lett 321:120–127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Rizvi I, Dinh TA, Yu W et al (2012) Photoimmunotherapy and irradiance modulation reduce chemotherapy cycles and toxicity in a murine model for ovarian carcinomatosis: perspective and results. Israel J Chem 52:776–787

    Article  CAS  Google Scholar 

  24. Spring BQ, Abu-Yousif AO, Palanisami A et al (2014) Selective treatment and monitoring of disseminated cancer micrometastases in vivo using dual-function, activatable immunoconjugates. Proc Natl Acad Sci U S A 111:E933–E942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Huang H-C, Hasan T (2014) The “nano” world in photodynamic therapy. Austin J Nanomed Nanotechnol 2:4

    Google Scholar 

  26. Molpus KL, Koelliker D, Atkins L et al (1996) Characterization of a xenograft model of human ovarian carcinoma which produces intraperitoneal carcinomatosis and metastases in mice. Int J Cancer 68:588–595

    Article  CAS  PubMed  Google Scholar 

  27. Weroha SJ, Becker MA, Enderica-Gonzalez S et al (2014) Tumorgrafts as in vivo surrogates for women with ovarian cancer. Clin Cancer Res 20:1288–1297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Topp MD, Hartley L, Cook M et al (2014) Molecular correlates of platinum response in human high-grade serous ovarian cancer patient-derived xenografts. Mol Oncol 8:656–668

    Article  PubMed  PubMed Central  Google Scholar 

  29. Ince TA, Sousa AD, Jones MA et al (2015) Characterization of twenty-five ovarian tumour cell lines that phenocopy primary tumours. Nat Commun 6:7419

    Article  CAS  PubMed  Google Scholar 

  30. Liu JF, Palakurthi S, Zeng Q et al (2017) Establishment of patient-derived tumor xenograft models of epithelial ovarian cancer for preclinical evaluation of novel therapeutics. Clin Cancer Res 23:1263–1273

    Article  CAS  PubMed  Google Scholar 

  31. Orsulic S (2004) Ovarian cancer. John Wiley & Sons, Inc., Hoboken, NJ

    Google Scholar 

  32. Fong MY, Kakar SS (2009) Ovarian cancer mouse models: a summary of current models and their limitations. Journal of Ovarian Research 2:12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hasan N, Ohman AW, Dinulescu DM (2015) The promise and challenge of ovarian cancer models. Transl Cancer Res 4:14–28

    CAS  PubMed  Google Scholar 

  34. Orsulic S, Li Y, Soslow RA et al (2002) Induction of ovarian cancer by defined multiple genetic changes in a mouse model system. Cancer Cell 1:53–62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chandler RL, Damrauer JS, Raab JR et al (2015) Coexistent ARID1A-PIK3CA mutations promote ovarian clear-cell tumorigenesis through pro-tumorigenic inflammatory cytokine signalling. Nat Commun 6:6118

    Article  CAS  PubMed  Google Scholar 

  36. Roby KF, Taylor CC, Sweetwood JP et al (2000) Development of a syngeneic mouse model for events related to ovarian cancer. Carcinogenesis 21:585–591

    Article  CAS  PubMed  Google Scholar 

  37. Greenaway J, Moorehead R, Shaw P et al (2008) Epithelial-stromal interaction increases cell proliferation, survival and tumorigenicity in a mouse model of human epithelial ovarian cancer. Gynecol Oncol 108:385–394

    Article  CAS  PubMed  Google Scholar 

  38. Bankert RB, Balu-Iyer SV, Odunsi K et al (2011) Humanized mouse model of ovarian cancer recapitulates patient solid tumor progression, ascites formation, and metastasis. PLoS One 6:e24420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Walsh NC, Kenney LL, Jangalwe S et al (2017) Humanized mouse models of clinical disease. Ann Rev Pathol 12:187–215

    Article  CAS  Google Scholar 

  40. Armstrong DK, Bundy B, Wenzel L et al (2006) Intraperitoneal cisplatin and paclitaxel in ovarian cancer. N Engl J Med 354:34–43

    Article  CAS  PubMed  Google Scholar 

  41. Han MS, Tung C-H (2014) Lessons learned from imaging mouse ovarian tumors: the route of probe injection makes a difference. Quant Imaging Med Surg 4:156–162

    PubMed  PubMed Central  Google Scholar 

  42. Spring BQ, Palanisami A, Hasan T (2014) Microscale receiver operating characteristic analysis of micrometastasis recognition using activatable fluorescent probes indicates leukocyte imaging as a critical factor to enhance accuracy. J Biomed Opt 19:066006–066006

    Article  PubMed  PubMed Central  Google Scholar 

  43. Anglesio MS, Wiegand KC, Melnyk N et al (2013) Type-specific cell line models for type-specific ovarian cancer research. PLoS One 8:e72162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Roberts D, Schick J, Conway S et al (2005) Identification of genes associated with platinum drug sensitivity and resistance in human ovarian cancer cells. Br J Cancer 92:1149–1158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Meirelles K, Benedict LA, Dombkowski D et al (2012) Human ovarian cancer stem/progenitor cells are stimulated by doxorubicin but inhibited by Mullerian inhibiting substance. Proc Natl Acad Sci U S A 109:2358–2363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Cioffi M, D’Alterio C, Camerlingo R et al (2015) Identification of a distinct population of CD133(+)CXCR4(+) cancer stem cells in ovarian cancer. Sci Rep 5:10357

    Article  PubMed  PubMed Central  Google Scholar 

  47. Zhong W, Celli JP, Rizvi I et al (2009) In vivo high-resolution fluorescence microendoscopy for ovarian cancer detection and treatment monitoring. Br J Cancer 101:2015–2022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Gmitro AF, Aziz D (1993) Confocal microscopy through a fiber-optic imaging bundle. Opt Lett 18:565

    Article  CAS  PubMed  Google Scholar 

  49. Aveline B, Redmond RW (1994) Photophysical and photosensitizing properties of benzoporphyrin derivative monoacid ring A (BPD-MA). Photochem Photobiol 59:328–335

    Article  CAS  PubMed  Google Scholar 

  50. Huggett MT, Jermyn M, Gillams A et al (2014) Phase I/II study of verteporfin photodynamic therapy in locally advanced pancreatic cancer. Br J Cancer 110:1698–1704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zhu TC, Liang X, Kim MM et al (2015) An IR navigation system for pleural PDT. Front Phys 3:172

    Article  Google Scholar 

  52. Ong YH, Kim MM, Finlay JC et al (2017) PDT dose dosimetry for Photofrin-mediated pleural photodynamic therapy (pPDT). Phys Med Biol 63:015031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lilge L, Molpus K, Hasan T et al (1998) Light dosimetry for intraperitoneal photodynamic therapy in a murine xenograft model of human epithelial ovarian carcinoma. Photochem Photobiol 68:281–288

    Article  CAS  PubMed  Google Scholar 

  54. Wilson BC, Patterson MS (2008) The physics, biophysics and technology of photodynamic therapy. Phys Med Biol 53:R61–R109

    Article  CAS  PubMed  Google Scholar 

  55. Pogue BW, Elliott JT, Kanick SC et al (2016) Revisiting photodynamic therapy dosimetry: reductionist & surrogate approaches to facilitate clinical success. Phys Med Biol 61:R57–R89

    Article  CAS  PubMed  Google Scholar 

  56. Zijlstra A, Mellor R, Panzarella G et al (2002) A quantitative analysis of rate-limiting steps in the metastatic cascade using human-specific real-time polymerase chain reaction. Cancer Res 62:7083–7092

    CAS  PubMed  Google Scholar 

  57. Diehl KH, Hull R, Morton D et al (2001) A good practice guide to the administration of substances and removal of blood, including routes and volumes. J Appl Toxicol 21:15–23

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Gabrielle Brauner for critical input. We are grateful to Tayyaba Hasan, Imran Rizvi, Adnan O. Abu-Yousif, Akilan Palanisami, and Zhiming Mai (Wellman Center for Photomedicine, Massachusetts General Hospital, and Harvard Medical School) for their many original contributions to this field. This chapter was supported by National Institutes of Health Grants K22-CA181611 (to B.Q.S.) and the Richard and Susan Smith Family Foundation (Newton, MA) Smith Family Award for Excellence in Biomedical Research (to B.Q.S.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bryan Q. Spring .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kercher, E.M., Spring, B.Q. (2022). Photodynamic Treatments for Disseminated Cancer Metastases Using Fiber-Optic Technologies. In: Broekgaarden, M., Zhang, H., Korbelik, M., Hamblin, M.R., Heger, M. (eds) Photodynamic Therapy. Methods in Molecular Biology, vol 2451. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2099-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2099-1_14

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2098-4

  • Online ISBN: 978-1-0716-2099-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics