Skip to main content

Methodological Approaches for Assessing Metabolomic Changes in Glioblastomas

  • Protocol
  • First Online:
Autophagy and Cancer

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2445))

Abstract

Glioblastoma (GBM), a highly malignant primary brain tumor, inevitably leads to death. In the last decade, a variety of novel molecular characteristics of GBMs were unraveled. The identification of the mutation in the IDH1 and less commonly IDH2 gene was surprising and ever since has nurtured research in the field of GBM metabolism. While initially thought that mutated IDH1 were to act as a loss of function mutation it became clear that it conferred the production of an oncometabolite that in turn substantially reprograms GBM metabolism. While mutated IDH1 represents truly the tip of the iceberg, there are numerous other related observations in GBM that are of significant interest to the field, including the notion that oxidative metabolism appears to play a more critical role than believed earlier. Metabolic zoning is another important hallmark of GBM since it was found that the infiltrative margin that drives GBM progression reveals enrichment of fatty acid derivatives. Consistently, fatty acid metabolism appears to be a novel therapeutic target for GBM. How metabolism in GBM intersects is another pivotal issue that appears to be important for its progression and response and resistance to therapies. In this review, we will summarize some of the most relevant findings related to GBM metabolism and cell death and how these observations are influencing the field. We will provide current approaches that are applied in the field to measure metabolomic changes in GBM models, including the detection of unlabeled and labeled metabolites as well as extracellular flux analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

2-HG:

2-Hydroxyglutarate

3-PGA:

3-Phosphoglyceric acid

Acetyl-CoA:

Acetyl coenzyme A

ATF3:

Activating transcription factor 3

ATF4:

Activating transcription factor 4

ATP:

Adenosine triphosphate

BAK:

Bcl-2 homologous antagonist killer

Bcl-xL:

Bcl-2-like protein 1

BODIPY C11:

Lipid peroxidation sensor

c-FLIP:

FLICE-like inhibitory protein

CPT1A:

Carnitine palmitoyltransferase 1A

crm-A:

Caspase-8 inhibitor

CRISPR/Cas9:

CRISPR-associated Protein 9

EGFR:

Epidermal growth factor receptor

FAD:

Flavin adenine dinucleotide

FADH:

Is the reduced form of flavin adenine dinucleotide (FAD)

FDA:

Food and Drug Administration

GPX4:

Glutathione peroxidase 4

IDH1 :

Isocitrate dehydrogenases 1

IDH2:

Isocitrate dehydrogenases 2

IDH3:

Isocitrate dehydrogenases 3

IKKB:

Inhibitor of nuclear factor kappa B kinase subunit beta

KRAS:

KRAS proto-oncogene, GTPase

MAPK:

Mitogen-activated protein kinase

Mcl-1:

MCL1 apoptosis regulator, BCL2 family member

MET:

MET proto-oncogene, receptor tyrosine kinase

mTORC1 :

Mammalian target of rapamycin complex 1

mTORC2:

Mammalian target of rapamycin complex 2

NAD:

Nicotinamide adenine dinucleotide

NADH:

The reduced form of nicotinamide adenine dinucleotide

NADPH2:

Nicotinamide adenine dinucleotide phosphate

PEA15:

Proliferation and apoptosis adaptor protein 15

PHGDH:

Phosphoglycerate dehydrogenase

PSAT1:

Phosphoserine aminotransferase 1

PSPH:

Phosphoserine phosphatase

SHMT:

Serine hydroxymethyltransferase

SLC1A5:

Solute carrier family 1 member 5

SLC7A11:

Cystine/glutamate antiporter xCT

SMARCA4:

Transcription activator BRG1 (Brahma-related gene-1)

TCA cycle:

Tricarboxylic acid cycle

Usp9X:

Ubiquitin specific peptidase 9 X-linked

XIAP:

X-Linked inhibitor of apoptosis

References

  1. Neftel C, Laffy J, Filbin MG, Hara T, Shore ME, Rahme GJ et al (2019) An integrative model of cellular states, plasticity, and genetics for glioblastoma. Cell 178(4):835–49.e21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Chowdhry S, Zanca C, Rajkumar U, Koga T, Diao Y, Raviram R et al (2019) NAD metabolic dependency in cancer is shaped by gene amplification and enhancer remodelling. Nature 569(7757):570–575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bi J, Ichu TA, Zanca C, Yang H, Zhang W, Gu Y et al (2019) Oncogene amplification in growth factor signaling pathways renders cancers dependent on membrane lipid remodeling. Cell Metab 30(3):525–38.e8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wang X, Yang K, Wu Q, Kim LJY, Morton AR, Gimple RC et al (2019) Targeting pyrimidine synthesis accentuates molecular therapy response in glioblastoma stem cells. Sci Transl Med 11(504):eaau4972

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Bunse L, Pusch S, Bunse T, Sahm F, Sanghvi K, Friedrich M et al (2018) Suppression of antitumor T cell immunity by the oncometabolite (R)-2-hydroxyglutarate. Nat Med 24(8):1192–1203

    Article  CAS  PubMed  Google Scholar 

  6. Hilf N, Kuttruff-Coqui S, Frenzel K, Bukur V, Stevanovic S, Gouttefangeas C et al (2019) Actively personalized vaccination trial for newly diagnosed glioblastoma. Nature 565(7738):240–245

    Article  CAS  PubMed  Google Scholar 

  7. Gupta SK, Kizilbash SH, Carlson BL, Mladek AC, Boakye-Agyeman F, Bakken KK et al (2016) Delineation of MGMT hypermethylation as a biomarker for veliparib-mediated temozolomide-sensitizing therapy of glioblastoma. J Natl Cancer Inst 108(5):djv369

    Article  PubMed  CAS  Google Scholar 

  8. Engert F, Schneider C, Weibeta LM, Probst M, Fulda S (2015) PARP inhibitors sensitize Ewing sarcoma cells to temozolomide-induced apoptosis via the mitochondrial pathway. Mol Cancer Ther 14(12):2818–2830

    Article  CAS  PubMed  Google Scholar 

  9. Nakagawa M, Nakatani F, Matsunaga H, Seki T, Endo M, Ogawara Y et al (2019) Selective inhibition of mutant IDH1 by DS-1001b ameliorates aberrant histone modifications and impairs tumor activity in chondrosarcoma. Oncogene 38:6835

    Article  CAS  PubMed  Google Scholar 

  10. Philip B, Yu DX, Silvis MR, Shin CH, Robinson JP, Robinson GL et al (2018) Mutant IDH1 promotes glioma formation in vivo. Cell Rep 23(5):1553–1564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Miller JJ, Shih HA, Andronesi OC, Cahill DP (2017) Isocitrate dehydrogenase-mutant glioma: evolving clinical and therapeutic implications. Cancer 123(23):4535–4546

    Article  CAS  PubMed  Google Scholar 

  12. Karpel-Massler G, Ishida CT, Bianchetti E, Zhang Y, Shu C, Tsujiuchi T et al (2017) Induction of synthetic lethality in IDH1-mutated gliomas through inhibition of Bcl-xL. Nat Commun 8(1):1067

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Johannessen TA, Mukherjee J, Viswanath P, Ohba S, Ronen SM, Bjerkvig R et al (2016) Rapid conversion of mutant IDH1 from driver to passenger in a model of human gliomagenesis. Mol Cancer Res 14(10):976–983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bardella C, Al-Dalahmah O, Krell D, Brazauskas P, Al-Qahtani K, Tomkova M et al (2016) Expression of Idh1(R132H) in the murine subventricular zone stem cell niche recapitulates features of early gliomagenesis. Cancer Cell 30(4):578–594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Fu X, Chin RM, Vergnes L, Hwang H, Deng G, Xing Y et al (2015) 2-Hydroxyglutarate inhibits ATP synthase and mTOR signaling. Cell Metab 22(3):508–515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Karpel-Massler G, Nguyen TTT, Shang E, Siegelin MD (2019) Novel IDH1-targeted glioma therapies. CNS Drugs 33(12):1155–1166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Karpel-Massler G, Ishida CT, Siegelin MD (2018) IDH1 R132H predicts sensitivity to Bcl-xL inhibition-mediated programmed cell death. Oncotarget 9(1):1–2

    Article  PubMed  Google Scholar 

  18. Capper D, Zentgraf H, Balss J, Hartmann C, von Deimling A (2009) Monoclonal antibody specific for IDH1 R132H mutation. Acta Neuropathol 118(5):599–601

    Article  CAS  PubMed  Google Scholar 

  19. Masui K, Harachi M, Cavenee WK, Mischel PS, Shibata N (2020) mTOR complex 2 is an integrator of cancer metabolism and epigenetics. Cancer Lett 478:1–7

    Article  CAS  PubMed  Google Scholar 

  20. Bi J, Chowdhry S, Wu S, Zhang W, Masui K, Mischel PS (2020) Altered cellular metabolism in gliomas - an emerging landscape of actionable co-dependency targets. Nat Rev Cancer 20(1):57–70

    Article  CAS  PubMed  Google Scholar 

  21. Shang E, Nguyen TTT, Shu C, Westhoff MA, Karpel-Massler G, Siegelin MD (2020) Epigenetic targeting of Mcl-1 is synthetically lethal with Bcl-xL/Bcl-2 inhibition in model systems of glioblastoma. Cancers (Basel) 12(8):2137

    Article  CAS  Google Scholar 

  22. Shang E, Zhang Y, Shu C, Ishida CT, Bianchetti E, Westhoff MA et al (2018) Dual inhibition of Bcl-2/Bcl-xL and XPO1 is synthetically lethal in glioblastoma model systems. Sci Rep 8(1):15383

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Karpel-Massler G, Ishida CT, Zhang Y, Halatsch ME, Westhoff MA, Siegelin MD (2017) Targeting intrinsic apoptosis and other forms of cell death by BH3-mimetics in glioblastoma. Expert Opin Drug Discov 12(10):1031–1040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Karpel-Massler G, Ishida CT, Bianchetti E, Shu C, Perez-Lorenzo R, Horst B et al (2017) Inhibition of mitochondrial matrix chaperones and antiapoptotic Bcl-2 family proteins empower antitumor therapeutic responses. Cancer Res 77(13):3513–3526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ishida CT, Bianchetti E, Shu C, Halatsch ME, Westhoff MA, Karpel-Massler G et al (2017) BH3-mimetics and BET-inhibitors elicit enhanced lethality in malignant glioma. Oncotarget 8(18):29558–29573

    Article  PubMed  PubMed Central  Google Scholar 

  26. Karpel-Massler G, Siegelin MD (2016) Bcl-xL inhibition - a novel strategy for glioma therapy. Aging (Albany NY) 8(9):1830–1831

    Article  Google Scholar 

  27. Koren E, Fuchs Y (2021) Modes of regulated cell death in cancer. Cancer Discov 11(2):245–265

    Article  CAS  PubMed  Google Scholar 

  28. Vasan K, Werner M, Chandel NS (2020) Mitochondrial metabolism as a target for cancer therapy. Cell Metab 32(3):341–352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yang WS, SriRamaratnam R, Welsch ME, Shimada K, Skouta R, Viswanathan VS et al (2014) Regulation of ferroptotic cancer cell death by GPX4. Cell 156(1–2):317–331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gao M, Yi J, Zhu J, Minikes AM, Monian P, Thompson CB et al (2019) Role of mitochondria in ferroptosis. Mol Cell 73(2):354–63 e3

    Article  CAS  PubMed  Google Scholar 

  31. Sehm T, Rauh M, Wiendieck K, Buchfelder M, Eyupoglu IY, Savaskan NE (2016) Temozolomide toxicity operates in a xCT/SLC7a11 dependent manner and is fostered by ferroptosis. Oncotarget 7(46):74630–74647

    Article  PubMed  PubMed Central  Google Scholar 

  32. Chen D, Fan Z, Rauh M, Buchfelder M, Eyupoglu IY, Savaskan N (2017) ATF4 promotes angiogenesis and neuronal cell death and confers ferroptosis in a xCT-dependent manner. Oncogene 36(40):5593–5608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Nguyen TTT, Zhang Y, Shang E, Shu C, Quinzii CM, Westhoff MA et al (2020) Inhibition of HDAC1/2 along with TRAP1 causes synthetic lethality in glioblastoma model systems. Cell 9(7):1661

    Article  CAS  Google Scholar 

  34. Nguyen TTT, Ishida CT, Shang E, Shu C, Torrini C, Zhang Y et al (2019) Activation of LXRbeta inhibits tumor respiration and is synthetically lethal with Bcl-xL inhibition. EMBO Mol Med 11(10):e10769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Nguyen TTT, Ishida CT, Shang E, Shu C, Bianchetti E, Karpel-Massler G et al (2019) Activation of LXR receptors and inhibition of TRAP1 causes synthetic lethality in solid tumors. Cancers (Basel) 11(6):788

    Article  CAS  Google Scholar 

  36. Zhang Y, Ishida CT, Ishida W, Lo SL, Zhao J, Shu C et al (2018) Combined HDAC and bromodomain protein inhibition reprograms tumor cell metabolism and elicits synthetic lethality in glioblastoma. Clin Cancer Res 24(16):3941–3954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Vucic D, Dixit VM, Wertz IE (2011) Ubiquitylation in apoptosis: a post-translational modification at the edge of life and death. Nat Rev Mol Cell Biol 12(7):439–452

    Article  CAS  PubMed  Google Scholar 

  38. Hlavac M, Dwucet A, Kast RE, Engelke J, Westhoff MA, Siegelin MD et al (2019) Combined inhibition of RAC1 and Bcl-2/Bcl-xL synergistically induces glioblastoma cell death through down-regulation of the Usp9X/Mcl-1 axis. Cell Oncol (Dordr) 42(3):287–301

    Article  CAS  Google Scholar 

  39. Bianchetti E, Bates SJ, Carroll SL, Siegelin MD, Roth KA (2018) Usp9X regulates cell death in malignant peripheral nerve sheath tumors. Sci Rep 8(1):17390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ishida CT, Shu C, Halatsch ME, Westhoff MA, Altieri DC, Karpel-Massler G et al (2017) Mitochondrial matrix chaperone and c-myc inhibition causes enhanced lethality in glioblastoma. Oncotarget 8(23):37140–37153

    Article  PubMed  PubMed Central  Google Scholar 

  41. Karpel-Massler G, Ramani D, Shu C, Halatsch ME, Westhoff MA, Bruce JN et al (2016) Metabolic reprogramming of glioblastoma cells by L-asparaginase sensitizes for apoptosis in vitro and in vivo. Oncotarget 7(23):33512–33528

    Article  PubMed  PubMed Central  Google Scholar 

  42. Karpel-Massler G, Horst BA, Shu C, Chau L, Tsujiuchi T, Bruce JN et al (2016) A synthetic cell-penetrating dominant-negative ATF5 peptide exerts anticancer activity against a broad spectrum of treatment-resistant cancers. Clin Cancer Res 22(18):4698–4711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Karpel-Massler G, Banu MA, Shu C, Halatsch ME, Westhoff MA, Bruce JN et al (2016) Inhibition of deubiquitinases primes glioblastoma cells to apoptosis in vitro and in vivo. Oncotarget 7(11):12791–12805

    Article  PubMed  PubMed Central  Google Scholar 

  44. Karpel-Massler G, Shu C, Chau L, Banu M, Halatsch ME, Westhoff MA et al (2015) Combined inhibition of Bcl-2/Bcl-xL and Usp9X/Bag3 overcomes apoptotic resistance in glioblastoma in vitro and in vivo. Oncotarget 6(16):14507–14521

    Article  PubMed  PubMed Central  Google Scholar 

  45. Xiao C, Yang BF, Asadi N, Beguinot F, Hao C (2002) Tumor necrosis factor-related apoptosis-inducing ligand-induced death-inducing signaling complex and its modulation by c-FLIP and PED/PEA-15 in glioma cells. J Biol Chem 277(28):25020–25025

    Article  CAS  PubMed  Google Scholar 

  46. Hao C, Beguinot F, Condorelli G, Trencia A, Van Meir EG, Yong VW et al (2001) Induction and intracellular regulation of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) mediated apotosis in human malignant glioma cells. Cancer Res 61(3):1162–1170

    CAS  PubMed  Google Scholar 

  47. Eckert A, Bock BC, Tagscherer KE, Haas TL, Grund K, Sykora J et al (2008) The PEA-15/PED protein protects glioblastoma cells from glucose deprivation-induced apoptosis via the ERK/MAP kinase pathway. Oncogene 27(8):1155–1166

    Article  CAS  PubMed  Google Scholar 

  48. Buzzai M, Bauer DE, Jones RG, Deberardinis RJ, Hatzivassiliou G, Elstrom RL et al (2005) The glucose dependence of Akt-transformed cells can be reversed by pharmacologic activation of fatty acid beta-oxidation. Oncogene 24(26):4165–4173

    Article  CAS  PubMed  Google Scholar 

  49. Steinbach JP, Wolburg H, Klumpp A, Probst H, Weller M (2003) Hypoxia-induced cell death in human malignant glioma cells: energy deprivation promotes decoupling of mitochondrial cytochrome c release from caspase processing and necrotic cell death. Cell Death Differ 10(7):823–832

    Article  CAS  PubMed  Google Scholar 

  50. Escamilla-Ramirez A, Castillo-Rodriguez RA, Zavala-Vega S, Jimenez-Farfan D, Anaya-Rubio I, Briseno E et al (2020) Autophagy as a potential therapy for malignant glioma. Pharmaceuticals (Basel) 13(7):156

    Article  CAS  Google Scholar 

  51. Siegelin MD (2013) Inhibition of the mitochondrial Hsp90 chaperone network: a novel, efficient treatment strategy for cancer? Cancer Lett 333(2):133–146

    Article  CAS  PubMed  Google Scholar 

  52. Siegelin MD, Dohi T, Raskett CM, Orlowski GM, Powers CM, Gilbert CA et al (2011) Exploiting the mitochondrial unfolded protein response for cancer therapy in mice and human cells. J Clin Invest 121(4):1349–1360

    Article  PubMed  PubMed Central  Google Scholar 

  53. Tomic T, Botton T, Cerezo M, Robert G, Luciano F, Puissant A et al (2011) Metformin inhibits melanoma development through autophagy and apoptosis mechanisms. Cell Death Dis 2:e199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Xiao Z, Gaertner S, Morresi-Hauf A, Genzel R, Duell T, Ullrich A et al (2017) Metformin triggers autophagy to attenuate drug-induced apoptosis in NSCLC cells, with minor effects on tumors of diabetic patients. Neoplasia 19(5):385–395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Voss V, Senft C, Lang V, Ronellenfitsch MW, Steinbach JP, Seifert V et al (2010) The pan-Bcl-2 inhibitor (−)-gossypol triggers autophagic cell death in malignant glioma. Mol Cancer Res 8(7):1002–1016

    Article  CAS  PubMed  Google Scholar 

  56. Geng Y, Kohli L, Klocke BJ, Roth KA (2010) Chloroquine-induced autophagic vacuole accumulation and cell death in glioma cells is p53 independent. Neuro-Oncology 12(5):473–481

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Golden EB, Cho HY, Jahanian A, Hofman FM, Louie SG, Schonthal AH et al (2014) Chloroquine enhances temozolomide cytotoxicity in malignant gliomas by blocking autophagy. Neurosurg Focus 37(6):E12

    Article  PubMed  Google Scholar 

  58. Wu X, Geng F, Cheng X, Guo Q, Zhong Y, Cloughesy TF et al (2020) Lipid droplets maintain energy homeostasis and glioblastoma growth via autophagic release of stored fatty acids. iScience 23(10):101569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Viale A, Pettazzoni P, Lyssiotis CA, Ying H, Sanchez N, Marchesini M et al (2014) Oncogene ablation-resistant pancreatic cancer cells depend on mitochondrial function. Nature 514(7524):628–632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Wang LB, Karpova A, Gritsenko MA, Kyle JE, Cao S, Li Y et al (2021) Proteogenomic and metabolomic characterization of human glioblastoma. Cancer Cell 39:509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Jacob F, Salinas RD, Zhang DY, Nguyen PTT, Schnoll JG, Wong SZH et al (2020) A patient-derived glioblastoma organoid model and biobank recapitulates inter- and intra-tumoral heterogeneity. Cell 180(1):188–204.e22

    Article  CAS  PubMed  Google Scholar 

  62. Zhang Y, Nguyen TTT, Shang E, Mela A, Humala N, Mahajan A et al (2020) MET inhibition elicits PGC1alpha-dependent metabolic reprogramming in glioblastoma. Cancer Res 80(1):30–43

    Article  CAS  PubMed  Google Scholar 

  63. Ishida CT, Zhang Y, Bianchetti E, Shu C, Nguyen TTT, Kleiner G et al (2018) Metabolic reprogramming by dual AKT/ERK inhibition through imipridones elicits unique vulnerabilities in glioblastoma. Clin Cancer Res 24(21):5392–5406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. DeNicola GM, Chen PH, Mullarky E, Sudderth JA, Hu Z, Wu D et al (2015) NRF2 regulates serine biosynthesis in non-small cell lung cancer. Nat Genet 47(12):1475–1481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. May JL, Kouri FM, Hurley LA, Liu J, Tommasini-Ghelfi S, Ji Y et al (2019) IDH3alpha regulates one-carbon metabolism in glioblastoma. Sci Adv 5(1):eaat0456

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Zhang B, Zheng A, Hydbring P, Ambroise G, Ouchida AT, Goiny M et al (2017) PHGDH defines a metabolic subtype in lung adenocarcinomas with poor prognosis. Cell Rep 19(11):2289–2303

    Article  CAS  PubMed  Google Scholar 

  67. Tanaka K, Sasayama T, Nagashima H, Irino Y, Takahashi M, Izumi Y et al (2021) Glioma cells require one-carbon metabolism to survive glutamine starvation. Acta Neuropathol Commun 9(1):16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Yang C, Sudderth J, Dang T, Bachoo RM, McDonald JG, DeBerardinis RJ (2009) Glioblastoma cells require glutamate dehydrogenase to survive impairments of glucose metabolism or Akt signaling. Cancer Res 69(20):7986–7993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Restall IJ, Cseh O, Richards LM, Pugh TJ, Luchman HA, Weiss S (2020) Brain tumor stem cell dependence on glutaminase reveals a metabolic vulnerability through the amino acid deprivation response pathway. Cancer Res 80(24):5478–5490

    Article  CAS  PubMed  Google Scholar 

  70. Mullen AR, Wheaton WW, Jin ES, Chen PH, Sullivan LB, Cheng T et al (2011) Reductive carboxylation supports growth in tumour cells with defective mitochondria. Nature 481(7381):385–388

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Metallo CM, Gameiro PA, Bell EL, Mattaini KR, Yang J, Hiller K et al (2011) Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia. Nature 481(7381):380–384

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Carrer A, Trefely S, Zhao S, Campbell SL, Norgard RJ, Schultz KC et al (2019) Acetyl-CoA metabolism supports multistep pancreatic tumorigenesis. Cancer Discov 9(3):416–435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Trefely S, Wellen KE (2018) Metabolite regulates differentiation. Science 360(6389):603–604

    Article  CAS  PubMed  Google Scholar 

  74. Liu X, Cooper DE, Cluntun AA, Warmoes MO, Zhao S, Reid MA et al (2018) Acetate production from glucose and coupling to mitochondrial metabolism in mammals. Cell 175(2):502–13 e13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Lee JV, Berry CT, Kim K, Sen P, Kim T, Carrer A et al (2018) Acetyl-CoA promotes glioblastoma cell adhesion and migration through Ca(2+)-NFAT signaling. Genes Dev 32(7–8):497–511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. McDonald OG, Li X, Saunders T, Tryggvadottir R, Mentch SJ, Warmoes MO et al (2017) Epigenomic reprogramming during pancreatic cancer progression links anabolic glucose metabolism to distant metastasis. Nat Genet 49(3):367–376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Wellen KE, Hatzivassiliou G, Sachdeva UM, Bui TV, Cross JR, Thompson CB (2009) ATP-citrate lyase links cellular metabolism to histone acetylation. Science 324(5930):1076–1080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Grassian AR, Parker SJ, Davidson SM, Divakaruni AS, Green CR, Zhang X et al (2014) IDH1 mutations alter citric acid cycle metabolism and increase dependence on oxidative mitochondrial metabolism. Cancer Res 74(12):3317–3331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Jiang L, Shestov AA, Swain P, Yang C, Parker SJ, Wang QA et al (2016) Reductive carboxylation supports redox homeostasis during anchorage-independent growth. Nature 532(7598):255–258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Lin H, Patel S, Affleck VS, Wilson I, Turnbull DM, Joshi AR et al (2017) Fatty acid oxidation is required for the respiration and proliferation of malignant glioma cells. Neuro-Oncology 19(1):43–54

    Article  PubMed  CAS  Google Scholar 

  81. Randall EC, Lopez BGC, Peng S, Regan MS, Abdelmoula WM, Basu SS et al (2020) Localized metabolomic gradients in patient-derived xenograft models of glioblastoma. Cancer Res 80(6):1258–1267

    Article  CAS  PubMed  Google Scholar 

  82. Nguyen TTT, Zhang Y, Shang E, Shu C, Torrini C, Zhao J et al (2020) HDAC inhibitors elicit metabolic reprogramming by targeting super-enhancers in glioblastoma models. J Clin Invest 130(7):3699–3716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Hui S, Ghergurovich JM, Morscher RJ, Jang C, Teng X, Lu W et al (2017) Glucose feeds the TCA cycle via circulating lactate. Nature 551(7678):115–118

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Lasorella A, Iavarone A (2021) The making of the glioblastoma classification. Br J Cancer 25:4–6

    Article  CAS  Google Scholar 

  85. Garofano L, Migliozzi S, Oh YT, D’Angelo F, Najac RD, Ko A et al (2021) Pathway-based classification of glioblastoma uncovers a mitochondrial subtype with therapeutic vulnerabilities. Nat Cancer 2(2):141–156

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Molina JR, Sun Y, Protopopova M, Gera S, Bandi M, Bristow C et al (2018) An inhibitor of oxidative phosphorylation exploits cancer vulnerability. Nat Med 24(7):1036–1046

    Article  CAS  PubMed  Google Scholar 

  87. Lissanu Deribe Y, Sun Y, Terranova C, Khan F, Martinez-Ledesma J, Gay J et al (2018) Mutations in the SWI/SNF complex induce a targetable dependence on oxidative phosphorylation in lung cancer. Nat Med 24(7):1047–1057

    Article  CAS  PubMed  Google Scholar 

  88. Vashisht Gopal YN, Gammon S, Prasad R, Knighton B, Pisaneschi F, Roszik J et al (2019) A novel mitochondrial inhibitor blocks MAPK pathway and overcomes MAPK inhibitor resistance in melanoma. Clin Cancer Res 25(21):6429–6442

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Chen D, Barsoumian HB, Fischer G, Yang L, Verma V, Younes AI et al (2020) Combination treatment with radiotherapy and a novel oxidative phosphorylation inhibitor overcomes PD-1 resistance and enhances antitumor immunity. J Immunother Cancer 8(1):e000289

    Article  PubMed  PubMed Central  Google Scholar 

  90. Wierzbicki K, Ravi K, Franson A, Bruzek A, Cantor E, Harris M et al (2020) Targeting and therapeutic monitoring of H3K27M-mutant glioma. Curr Oncol Rep 22(2):19

    Article  PubMed  PubMed Central  Google Scholar 

  91. Frey PA (1996) The Leloir pathway: a mechanistic imperative for three enzymes to change the stereochemical configuration of a single carbon in galactose. FASEB J 10(4):461–470

    Article  CAS  PubMed  Google Scholar 

  92. Hashiguchi K, Zhang-Akiyama QM (2009) Establishment of human cell lines lacking mitochondrial DNA. Methods Mol Biol 554:383–391

    Article  CAS  PubMed  Google Scholar 

  93. Kofuji S, Hirayama A, Eberhardt AO, Kawaguchi R, Sugiura Y, Sampetrean O et al (2019) IMP dehydrogenase-2 drives aberrant nucleolar activity and promotes tumorigenesis in glioblastoma. Nat Cell Biol 21(8):1003–1014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Faubert B, Li KY, Cai L, Hensley CT, Kim J, Zacharias LG et al (2017) Lactate metabolism in human lung tumors. Cell 171(2):358–71.e9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Mashimo T, Pichumani K, Vemireddy V, Hatanpaa KJ, Singh DK, Sirasanagandla S et al (2014) Acetate is a bioenergetic substrate for human glioblastoma and brain metastases. Cell 159(7):1603–1614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Zhang G, Frederick DT, Wu L, Wei Z, Krepler C, Srinivasan S et al (2016) Targeting mitochondrial biogenesis to overcome drug resistance to MAPK inhibitors. J Clin Invest 126(5):1834–1856

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus D. Siegelin .

Editor information

Editors and Affiliations

Ethics declarations

The authors declare no competing interests.

Funding

M.D. Siegelin: NIH NINDS R01 NS095848, R01NS102366, R01NS113793, K08NS083732, Louis V. Gerstner, Jr. Scholars Program (2017–2020) and Schaefer Research Scholars Program Awards 2020. Trang T.T. Nguyen: American Brain Tumor Association Basic Research Fellowship in Memory of Katie Monson (BRF1900018).

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Nguyen, T.T.T., Shang, E., Westhoff, MA., Karpel-Massler, G., Siegelin, M.D. (2022). Methodological Approaches for Assessing Metabolomic Changes in Glioblastomas. In: Norberg, H., Norberg, E. (eds) Autophagy and Cancer. Methods in Molecular Biology, vol 2445. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2071-7_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2071-7_19

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2070-0

  • Online ISBN: 978-1-0716-2071-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics