Skip to main content

Immunofluorescence-Based Measurement of Autophagosome Formation During Mitophagy

  • Protocol
  • First Online:
Autophagy and Cancer

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2445))

Abstract

Damaged, dysfunctional, or excess mitochondria are removed from cells via a selective form of macroautophagy termed mitophagy. The clearance of mitochondria during mitophagy is mediated by double-membrane vesicles called autophagosomes, which encapsulate mitochondria that have been tagged for mitophagic removal before delivering them to lysosomes for degradation. A variety of different mitophagy pathways exist that differ in their mechanisms of initiation but share a common pathway of autophagosome formation. Autophagosome biogenesis is regulated by a number of autophagy factors which translocate from the cytosol to spatially defined focal points (foci) on the mitochondrial surface after mitophagy has been initiated. The functional analysis of autophagosome biogenesis requires the use of microscopy-based techniques which assess the recruitment of autophagy factors to mitophagic foci representing autophagosome formation sites. Here, we describe a routine method for the quantitative 3D analysis of mitophagic foci in PINK1/Parkin mitophagy immunofluorescence samples through the application of object-based image analysis (OBIA) to 3D confocal imaging datasets. The approach enables unbiased high-throughput characterisation of autophagosome biogenesis during mitophagy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Garza-Lombo C, Pappa A, Panayiotidis MI, Franco R (2020) Redox homeostasis, oxidative stress and mitophagy. Mitochondrion 51:105–117

    Article  CAS  Google Scholar 

  2. Heo JM, Ordureau A, Paulo JA, Rinehart J, Harper JW (2015) The PINK1-PARKIN mitochondrial ubiquitylation pathway drives a program of OPTN/NDP52 recruitment and TBK1 activation to promote mitophagy. Mol Cell 60(1):7–20

    Article  CAS  Google Scholar 

  3. Lazarou M, Sliter DA, Kane LA, Sarraf SA, Wang C, Burman JL et al (2015) The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy. Nature 524(7565):309–314

    Article  CAS  Google Scholar 

  4. Wong YC, Holzbaur EL (2014) Optineurin is an autophagy receptor for damaged mitochondria in Parkin-mediated mitophagy that is disrupted by an ALS-linked mutation. Proc Natl Acad Sci U S A 111(42):E4439–E4448

    Article  CAS  Google Scholar 

  5. Vargas JNS, Wang C, Bunker E, Hao L, Maric D, Schiavo G et al (2019) Spatiotemporal control of ULK1 activation by NDP52 and TBK1 during selective autophagy. Mol Cell 74(2):347–62 e6

    Article  CAS  Google Scholar 

  6. Abeliovich H, Dunn WA Jr, Kim J, Klionsky DJ (2000) Dissection of autophagosome biogenesis into distinct nucleation and expansion steps. J Cell Biol 151(5):1025–1034

    Article  CAS  Google Scholar 

  7. Dooley HC, Razi M, Polson HE, Girardin SE, Wilson MI, Tooze SA (2014) WIPI2 links LC3 conjugation with PI3P, autophagosome formation, and pathogen clearance by recruiting Atg12-5-16L1. Mol Cell 55(2):238–252

    Article  CAS  Google Scholar 

  8. Itakura E, Mizushima N (2010) Characterization of autophagosome formation site by a hierarchical analysis of mammalian Atg proteins. Autophagy 6(6):764–776

    Article  CAS  Google Scholar 

  9. Judith D, Jefferies HBJ, Boeing S, Frith D, Snijders AP, Tooze SA (2019) ATG9A shapes the forming autophagosome through Arfaptin 2 and phosphatidylinositol 4-kinase IIIbeta. J Cell Biol 218(5):1634–1652

    Article  CAS  Google Scholar 

  10. Klionsky DJ, Abeliovich H, Agostinis P, Agrawal DK, Aliev G, Askew DS et al (2008) Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes. Autophagy 4(2):151–175

    Article  CAS  Google Scholar 

  11. Todd JT (2004) The visual perception of 3D shape. Trends Cogn Sci 8(3):115–121

    Article  Google Scholar 

  12. Nguyen TN, Padman BS, Zellner S, Khuu G, Uoselis L, Lam WK et al (2021) ATG4 family proteins drive phagophore growth independently of the LC3/GABARAP lipidation system. Mol Cell 81:2013

    Article  CAS  Google Scholar 

  13. Padman BS, Nguyen TN, Uoselis L, Skulsuppaisarn M, Nguyen LK, Lazarou M (2019) LC3/GABARAPs drive ubiquitin-independent recruitment of optineurin and NDP52 to amplify mitophagy. Nat Commun 10(1):408

    Article  CAS  Google Scholar 

  14. Blaschke T (2010) Object based image analysis for remote sensing. ISPRS J Photogramm 65(1):2–16

    Article  Google Scholar 

  15. Hossain MD, Chen D (2019) Segmentation for object-based image analysis (OBIA): a review of algorithms and challenges from remote sensing perspective. ISPRS J Photogramm 150:115–134

    Article  Google Scholar 

  16. Nguyen TN, Padman BS, Usher J, Oorschot V, Ramm G, Lazarou M (2016) Atg8 family LC3/GABARAP proteins are crucial for autophagosome-lysosome fusion but not autophagosome formation during PINK1/Parkin mitophagy and starvation. J Cell Biol 215(6):857–874

    Article  CAS  Google Scholar 

  17. Ollion J, Cochennec J, Loll F, Escude C, Boudier T (2013) TANGO: a generic tool for high-throughput 3D image analysis for studying nuclear organization. Bioinformatics 29(14):1840–1841

    Article  CAS  Google Scholar 

  18. Meijering E (2007) FeatureJ: an ImageJ plugin suite for image feature extraction

    Google Scholar 

  19. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9(7):676–682

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Benjamin S. Padman or Michael Lazarou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Padman, B.S., Lazarou, M. (2022). Immunofluorescence-Based Measurement of Autophagosome Formation During Mitophagy. In: Norberg, H., Norberg, E. (eds) Autophagy and Cancer. Methods in Molecular Biology, vol 2445. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2071-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2071-7_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2070-0

  • Online ISBN: 978-1-0716-2071-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics