Skip to main content

Dissecting Context-Specific Galectin Binding Using Glycoengineered Cell Libraries

  • Protocol
  • First Online:
Galectins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2442))

  • 773 Accesses

Abstract

The family of galectins has critical functions in a wide range of biological processes, primarily based on their broad interactions with proteins carrying β-galactoside-containing glycans. To understand the diversity of functions governed by galectins, it is essential to define the binding specificity of the carbohydrate recognition domain (CRDs) of the individual galectins. The binding specificity of galectins has primarily been examined with glycoarrays, but now the ability to probe and dissect binding to defined glycans in the context of a cellular membrane is facilitated by the generations of glycoengineered cell libraries with defined glyco-phenotypes. The following section will show how galectin specificities can be probed in the natural context of cellular surfaces using glycoengineered cell libraries, and how binding to glycoproteins can be measured in solution with fluorescence anisotropy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Thiemann S, Baum LG (2016) Galectins and immune responses-just how do they do those things they do? Annu Rev Immunol 34:243–264. https://doi.org/10.1146/annurev-immunol-041015-055402

    Article  CAS  PubMed  Google Scholar 

  2. Sciacchitano S, Lavra L, Morgante A, Ulivieri A, Magi F, De Francesco GP, Bellotti C, Salehi LB, Ricci A (2018) Galectin-3: one molecule for an alphabet of diseases, from A to Z. Int J Mol Sci 19(2):379. https://doi.org/10.3390/ijms19020379

    Article  CAS  PubMed Central  Google Scholar 

  3. Leffler H, Carlsson S, Hedlund M, Qian Y, Poirier F (2002) Introduction to galectins. Glycoconj J 19(7–9):433–440. https://doi.org/10.1023/B:GLYC.0000014072.34840.04

    Article  CAS  PubMed  Google Scholar 

  4. Cummings RD, Liu FT, Vasta GR (2015) Galectins. In: Varki A, Cummings RD et al (eds) Essentials of glycobiology. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp 469–480. https://doi.org/10.1101/glycobiology.3e.036

    Chapter  Google Scholar 

  5. Salomonsson E, Carlsson MC, Osla V, Hendus-Altenburger R, Kahl-Knutson B, Oberg CT, Sundin A, Nilsson R, Nordberg-Karlsson E, Nilsson UJ, Karlsson A, Rini JM, Leffler H (2010) Mutational tuning of galectin-3 specificity and biological function. J Biol Chem 285(45):35079–35091. https://doi.org/10.1074/jbc.M109.098160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Yang RY, Rabinovich GA, Liu FT (2008) Galectins: structure, function and therapeutic potential. Expert Rev Mol Med 10:e17. https://doi.org/10.1017/S1462399408000719

    Article  PubMed  Google Scholar 

  7. Hirabayashi J, Hashidate T, Arata Y, Nishi N, Nakamura T, Hirashima M, Urashima T, Oka T, Futai M, Muller WE, Yagi F, Kasai K (2002) Oligosaccharide specificity of galectins: a search by frontal affinity chromatography. Biochim Biophys Acta 1572(2–3):232–254. https://doi.org/10.1016/s0304-4165(02)00311-2

    Article  CAS  PubMed  Google Scholar 

  8. Sorme P, Kahl-Knutson B, Wellmar U, Nilsson UJ, Leffler H (2003) Fluorescence polarization to study galectin-ligand interactions. Methods Enzymol 362:504–512. https://doi.org/10.1016/S0076-6879(03)01033-4

    Article  PubMed  Google Scholar 

  9. Carlsson S, Oberg CT, Carlsson MC, Sundin A, Nilsson UJ, Smith D, Cummings RD, Almkvist J, Karlsson A, Leffler H (2007) Affinity of galectin-8 and its carbohydrate recognition domains for ligands in solution and at the cell surface. Glycobiology 17(6):663–676. https://doi.org/10.1093/glycob/cwm026

    Article  CAS  PubMed  Google Scholar 

  10. Song X, Xia B, Stowell SR, Lasanajak Y, Smith DF, Cummings RD (2009) Novel fluorescent glycan microarray strategy reveals ligands for galectins. Chem Biol 16(1):36–47. https://doi.org/10.1016/j.chembiol.2008.11.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Arthur CM, Baruffi MD, Cummings RD, Stowell SR (2015) Evolving mechanistic insights into galectin functions. Methods Mol Biol 1207:1–35. https://doi.org/10.1007/978-1-4939-1396-1_1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Stowell SR, Arthur CM, Mehta P, Slanina KA, Blixt O, Leffler H, Smith DF, Cummings RD (2008) Galectin-1, -2, and -3 exhibit differential recognition of sialylated glycans and blood group antigens. J Biol Chem 283(15):10109–10123. https://doi.org/10.1074/jbc.M709545200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sorme P, Arnoux P, Kahl-Knutsson B, Leffler H, Rini JM, Nilsson UJ (2005) Structural and thermodynamic studies on cation-Pi interactions in lectin-ligand complexes: high-affinity galectin-3 inhibitors through fine-tuning of an arginine-arene interaction. J Am Chem Soc 127(6):1737–1743. https://doi.org/10.1021/ja043475p

    Article  CAS  PubMed  Google Scholar 

  14. Patnaik SK, Potvin B, Carlsson S, Sturm D, Leffler H, Stanley P (2006) Complex N-glycans are the major ligands for galectin-1, -3, and -8 on Chinese hamster ovary cells. Glycobiology 16(4):305–317. https://doi.org/10.1093/glycob/cwj063

    Article  CAS  PubMed  Google Scholar 

  15. Bum-Erdene K, Leffler H, Nilsson UJ, Blanchard H (2015) Structural characterization of human galectin-4 C-terminal domain: elucidating the molecular basis for recognition of glycosphingolipids, sulfated saccharides and blood group antigens. FEBS J 282(17):3348–3367. https://doi.org/10.1111/febs.13348

    Article  CAS  PubMed  Google Scholar 

  16. Leppanen A, Stowell S, Blixt O, Cummings RD (2005) Dimeric galectin-1 binds with high affinity to alpha2,3-sialylated and non-sialylated terminal N-acetyllactosamine units on surface-bound extended glycans. J Biol Chem 280(7):5549–5562. https://doi.org/10.1074/jbc.M412019200

    Article  CAS  PubMed  Google Scholar 

  17. Ideo H, Matsuzaka T, Nonaka T, Seko A, Yamashita K (2011) Galectin-8-N-domain recognition mechanism for sialylated and sulfated glycans. J Biol Chem 286(13):11346–11355. https://doi.org/10.1074/jbc.M110.195925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yang Z, Wang S, Halim A, Schulz MA, Frodin M, Rahman SH, Vester-Christensen MB, Behrens C, Kristensen C, Vakhrushev SY, Bennett EP, Wandall HH, Clausen H (2015) Engineered CHO cells for production of diverse, homogeneous glycoproteins. Nat Biotechnol 33(8):842–844. https://doi.org/10.1038/nbt.3280

    Article  CAS  PubMed  Google Scholar 

  19. Narimatsu Y, Joshi HJ, Nason R, Van Coillie J, Karlsson R, Sun L, Ye Z, Chen YH, Schjoldager KT, Steentoft C, Furukawa S, Bensing BA, Sullam PM, Thompson AJ, Paulson JC, Bull C, Adema GJ, Mandel U, Hansen L, Bennett EP, Varki A, Vakhrushev SY, Yang Z, Clausen H (2019) An atlas of human glycosylation pathways enables display of the human glycome by gene engineered cells. Mol Cell 75(2):394–407.e5. https://doi.org/10.1016/j.molcel.2019.05.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bagdonaite I, Pallesen EM, Ye Z, Vakhrushev SY, Marinova IN, Nielsen MI, Kramer SH, Pedersen SF, Joshi HJ, Bennett EP, Dabelsteen S, Wandall HH (2020) O-glycan initiation directs distinct biological pathways and controls epithelial differentiation. EMBO Rep 21(6):e48885. https://doi.org/10.15252/embr.201948885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Dabelsteen S, Pallesen EMH, Marinova IN, Nielsen MI, Adamopoulou M, Romer TB, Levann A, Andersen MM, Ye Z, Thein D, Bennett EP, Bull C, Moons SJ, Boltje T, Clausen H, Vakhrushev SY, Bagdonaite I, Wandall HH (2020) Essential functions of glycans in human epithelia dissected by a CRISPR-Cas9-engineered human organotypic skin model. Dev Cell 54(5):669–684.e7. https://doi.org/10.1016/j.devcel.2020.06.039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Nielsen MI, Stegmayr J, Grant OC, Yang Z, Nilsson UJ, Boos I, Carlsson MC, Woods RJ, Unverzagt C, Leffler H, Wandall HH (2018) Galectin binding to cells and glycoproteins with genetically modified glycosylation reveals galectin-glycan specificities in a natural context. J Biol Chem 293(52):20249–20262. https://doi.org/10.1074/jbc.RA118.004636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans H. Wandall .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Nielsen, M.I., Wandall, H.H. (2022). Dissecting Context-Specific Galectin Binding Using Glycoengineered Cell Libraries. In: Stowell, S.R., Arthur, C.M., Cummings, R.D. (eds) Galectins. Methods in Molecular Biology, vol 2442. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2055-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2055-7_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2054-0

  • Online ISBN: 978-1-0716-2055-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics