Skip to main content

Examination of Whole-Cell Galectin Binding by Solid Phase and Flow Cytometric Analysis

  • Protocol
  • First Online:
Galectins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2442))

Abstract

We have utilized simple flow cytometric and fluorescence-based solid phase assays to study the interaction of glycan binding proteins (GBP) to cell surface glycoconjugates. These methods utilize commonly employed flow cytometry techniques and commercially available streptavidin-coated microplates to immobilize various biotinylated ligands, such as glycopeptides, oligosaccharides, and whole cells. Using this approach, fluorescently labeled GBPs, in particular, members of the galectin family, can be interrogated for potential interactions with cell surface carbohydrates, including elucidation of the potential impact of alterations in glycosylation on carbohydrate recognition. Using these approaches, we present examples of flow cytometric and fluorescence-based solid phase assays to study galectin–carbohydrate interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Johannes L, Jacob R, Leffler H (2018) Galectins at a glance. J Cell Sci 131(9):jcs208884. https://doi.org/10.1242/jcs.208884

    Article  CAS  PubMed  Google Scholar 

  2. Liu FT, Rabinovich GA (2010) Galectins: regulators of acute and chronic inflammation. Ann N Y Acad Sci 1183:158–182. https://doi.org/10.1111/j.1749-6632.2009.05131.x

    Article  CAS  PubMed  Google Scholar 

  3. Cerliani JP, Stowell SR, Mascanfroni ID, Arthur CM, Cummings RD, Rabinovich GA (2011) Expanding the universe of cytokines and pattern recognition receptors: galectins and glycans in innate immunity. J Clin Immunol 31(1):10–21. https://doi.org/10.1007/s10875-010-9494-2

    Article  CAS  PubMed  Google Scholar 

  4. van Kooyk Y, Rabinovich GA (2008) Protein-glycan interactions in the control of innate and adaptive immune responses. Nat Immunol 9(6):593–601. https://doi.org/10.1038/ni.f.203

    Article  CAS  PubMed  Google Scholar 

  5. Poland PA, Rondanino C, Kinlough CL, Heimburg-Molinaro J, Arthur CM, Stowell SR, Smith DF, Hughey RP (2011) Identification and characterization of endogenous galectins expressed in Madin Darby canine kidney cells. J Biol Chem 286(8):6780–6790. https://doi.org/10.1074/jbc.M110.179002

    Article  CAS  PubMed  Google Scholar 

  6. Kamili NA, Arthur CM, Gerner-Smidt C, Tafesse E, Blenda A, Dias-Baruffi M, Stowell SR (2016) Key regulators of galectin-glycan interactions. Proteomics 16(24):3111–3125. https://doi.org/10.1002/pmic.201600116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Liu FT, Yang RY, Hsu DK (2012) Galectins in acute and chronic inflammation. Ann N Y Acad Sci 1253:80–91. https://doi.org/10.1111/j.1749-6632.2011.06386.x

    Article  CAS  PubMed  Google Scholar 

  8. Arthur CM, Cummings RD, Stowell SR (2014) Using glycan microarrays to understand immunity. Curr Opin Chem Biol 18C:55–61. https://doi.org/10.1016/j.cbpa.2013.12.017

    Article  CAS  Google Scholar 

  9. Blixt O, Head S, Mondala T, Scanlan C, Huflejt ME, Alvarez R, Bryan MC, Fazio F, Calarese D, Stevens J, Razi N, Stevens DJ, Skehel JJ, van Die I, Burton DR, Wilson IA, Cummings R, Bovin N, Wong CH, Paulson JC (2004) Printed covalent glycan array for ligand profiling of diverse glycan binding proteins. Proc Natl Acad Sci U S A 101(49):17033–17038. https://doi.org/10.1073/pnas.0407902101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Song X, Xia B, Stowell SR, Lasanajak Y, Smith DF, Cummings RD (2009) Novel fluorescent glycan microarray strategy reveals ligands for galectins. Chem Biol 16(1):36–47. https://doi.org/10.1016/j.chembiol.2008.11.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Song X, Lasanajak Y, Olson LJ, Boonen M, Dahms NM, Kornfeld S, Cummings RD, Smith DF (2009) Glycan microarray analysis of P-type lectins reveals distinct phosphomannose glycan recognition. J Biol Chem 284(50):35201–35214. https://doi.org/10.1074/jbc.M109.056119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. de Boer AR, Hokke CH, Deelder AM, Wuhrer M (2007) General microarray technique for immobilization and screening of natural glycans. Anal Chem 79(21):8107–8113. https://doi.org/10.1021/ac071187g

    Article  CAS  PubMed  Google Scholar 

  13. Song X, Lasanajak Y, Rivera-Marrero C, Luyai A, Willard M, Smith DF, Cummings RD (2009) Generation of a natural glycan microarray using 9-fluorenylmethyl chloroformate (FmocCl) as a cleavable fluorescent tag. Anal Biochem 395(2):151–160. https://doi.org/10.1016/j.ab.2009.08.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Liu Y, Palma AS, Feizi T (2009) Carbohydrate microarrays: key developments in glycobiology. Biol Chem 390(7):647–656. https://doi.org/10.1515/BC.2009.071

    Article  CAS  PubMed  Google Scholar 

  15. Song X, Lasanajak Y, Xia B, Heimburg-Molinaro J, Rhea JM, Ju H, Zhao C, Molinaro RJ, Cummings RD, Smith DF (2011) Shotgun glycomics: a microarray strategy for functional glycomics. Nat Methods 8(1):85–90. https://doi.org/10.1038/nmeth.1540

    Article  CAS  PubMed  Google Scholar 

  16. Patnaik SK, Potvin B, Carlsson S, Sturm D, Leffler H, Stanley P (2006) Complex N-glycans are the major ligands for galectin-1, -3, and -8 on Chinese hamster ovary cells. Glycobiology 16(4):305–317. https://doi.org/10.1093/glycob/cwj063

    Article  CAS  PubMed  Google Scholar 

  17. Arthur CM, Baruffi MD, Cummings RD, Stowell SR (2015) Evolving mechanistic insights into galectin functions. Methods Mol Biol 1207:1–35. https://doi.org/10.1007/978-1-4939-1396-1_1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Robinson BS, Arthur CM, Kamili NA, Stowell SR (2018) Galectin regulation of host microbial interactions. Trends Glycosci Glycotechnol 30(172):SE185–SE198

    Article  Google Scholar 

  19. Robinson BS, Saeedi B, Arthur CM, Owens J, Naudin C, Ahmed N, Luo L, Jones R, Neish A, Stowell SR (2020) Galectin-9 is a novel regulator of epithelial restitution. Am J Pathol 190(8):1657–1666. https://doi.org/10.1016/j.ajpath.2020.04.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Vallecillo-Zuniga ML, Rathgeber MF, Poulson PD, Hayes S, Luddington JS, Gill HN, Teynor M, Kartchner BC, Valdoz J, Stowell C, Markham AR, Arthur C, Stowell S, Van Ry PM (2020) Treatment with galectin-1 improves myogenic potential and membrane repair in dysferlin-deficient models. PLoS One 15(9):e0238441. https://doi.org/10.1371/journal.pone.0238441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Rodrigues LC, Kabeya LM, Azzolini A, Cerri DG, Stowell SR, Cummings RD, Lucisano-Valim YM, Dias-Baruffi M (2019) Galectin-1 modulation of neutrophil reactive oxygen species production depends on the cell activation state. Mol Immunol 116:80–89. https://doi.org/10.1016/j.molimm.2019.10.001

    Article  CAS  PubMed  Google Scholar 

  22. Stowell SR, Cho M, Feasley CL, Arthur CM, Song X, Colucci JK, Karmakar S, Mehta P, Dias-Baruffi M, McEver RP, Cummings RD (2009) Ligand reduces galectin-1 sensitivity to oxidative inactivation by enhancing dimer formation. J Biol Chem 284(8):4989–4999. https://doi.org/10.1074/jbc.M808925200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Stowell SR, Dias-Baruffi M, Penttila L, Renkonen O, Nyame AK, Cummings RD (2004) Human galectin-1 recognition of poly-N-acetyllactosamine and chimeric polysaccharides. Glycobiology 14(2):157–167. https://doi.org/10.1093/glycob/cwh018

    Article  CAS  PubMed  Google Scholar 

  24. Kohatsu L, Hsu DK, Jegalian AG, Liu FT, Baum LG (2006) Galectin-3 induces death of Candida species expressing specific beta-1,2-linked mannans. J Immunol 177(7):4718–4726

    Article  CAS  Google Scholar 

  25. Karmakar S, Stowell SR, Cummings RD, McEver RP (2008) Galectin-1 signaling in leukocytes requires expression of complex-type N-glycans. Glycobiology 18(10):770–778

    Article  CAS  Google Scholar 

  26. Stowell SR, Arthur CM, Mehta P, Slanina KA, Blixt O, Leffler H, Smith DF, Cummings RD (2008) Galectin-1, -2, and -3 exhibit differential recognition of sialylated glycans and blood group antigens. J Biol Chem 283(15):10109–10123. https://doi.org/10.1074/jbc.M709545200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Stowell SR, Arthur CM, Slanina KA, Horton JR, Smith DF, Cummings RD (2008) Dimeric Galectin-8 induces phosphatidylserine exposure in leukocytes through polylactosamine recognition by the C-terminal domain. J Biol Chem 283(29):20547–20559. https://doi.org/10.1074/jbc.M802495200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Stowell SR, Arthur CM, Dias-Baruffi M, Rodrigues LC, Gourdine JP, Heimburg-Molinaro J, Ju T, Molinaro RJ, Rivera-Marrero C, Xia B, Smith DF, Cummings RD (2010) Innate immune lectins kill bacteria expressing blood group antigen. Nat Med 16(3):295–301. https://doi.org/10.1038/nm.2103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bax M, Garcia-Vallejo JJ, Jang-Lee J, North SJ, Gilmartin TJ, Hernandez G, Crocker PR, Leffler H, Head SR, Haslam SM, Dell A, van Kooyk Y (2007) Dendritic cell maturation results in pronounced changes in glycan expression affecting recognition by siglecs and galectins. J Immunol 179(12):8216–8224

    Article  CAS  Google Scholar 

  30. Carlsson S, Oberg CT, Carlsson MC, Sundin A, Nilsson UJ, Smith D, Cummings RD, Almkvist J, Karlsson A, Leffler H (2007) Affinity of galectin-8 and its carbohydrate recognition domains for ligands in solution and at the cell surface. Glycobiology 17(6):663–676. https://doi.org/10.1093/glycob/cwm026

    Article  CAS  PubMed  Google Scholar 

  31. Stowell SR, Arthur CM, McBride R, Berger O, Razi N, Heimburg-Molinaro J, Rodrigues JP, Noll AJ, von Gunten S, Smith DF, Knirel YA, Paulson JC, Cummings RD (2014) Microbial glycan microarrays define key features of host-microbial interactions. Nat Chem Biol 10(6):470–476

    Article  CAS  Google Scholar 

  32. Stowell SR, Arthur CM, McBride R, Berger O, Razi N, Heimburg-Molinaro J, Rodrigues LC, Gourdine JP, Noll AJ, von Gunten S, Smith DF, Knirel YA, Paulson JC, Cummings RD (2014) Microbial glycan microarrays define key features of host-microbial interactions. Nat Chem Biol 10(6):470–476. https://doi.org/10.1038/nchembio.1525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Robinson BS, Arthur CM, Evavold B, Roback E, Kamili NA, Stowell CS, Vallecillo-Zuniga ML, Van Ry PM, Dias-Baruffi M, Cummings RD, Stowell SR (2019) The sweet-side of leukocytes: galectins as master regulators of neutrophil function. Front Immunol 10:1762. https://doi.org/10.3389/fimmu.2019.01762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mener A, Arthur CM, Patel SR, Liu J, Hendrickson JE, Stowell SR (2018) Complement component 3 negatively regulates antibody response by modulation of red blood cell antigen. Front Immunol 9:676. https://doi.org/10.3389/fimmu.2018.00676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Mener A, Patel SR, Arthur CM, Chonat S, Wieland A, Santhanakrishnan M, Liu J, Maier CL, Jajosky RP, Girard-Pierce K, Bennett A, Zerra PE, Smith NH, Hendrickson JE, Stowell SR (2018) Complement serves as a switch between CD4+ T cell-independent and -dependent RBC antibody responses. JCI Insight 3(22):e121631. https://doi.org/10.1172/jci.insight.121631

    Article  PubMed Central  Google Scholar 

  36. Mener A, Patel SR, Arthur CM, Stowell SR (2019) Antibody-mediated immunosuppression can result from RBC antigen loss independent of Fcgamma receptors in mice. Transfusion 59(1):371–384. https://doi.org/10.1111/trf.14939

    Article  CAS  PubMed  Google Scholar 

  37. Patel SR, Bennett A, Girard-Pierce K, Maier CL, Chonat S, Arthur CM, Zerra PE, Mener A, Stowell SR (2018) Recipient priming to one RBC alloantigen directly enhances subsequent alloimmunization in mice. Blood Adv 2(2):105–115. https://doi.org/10.1182/bloodadvances.2017010124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sullivan HC, Gerner-Smidt C, Nooka AK, Arthur CM, Thompson L, Mener A, Patel SR, Yee M, Fasano RM, Josephson CD, Kaufman RM, Roback JD, Lonial S, Stowell SR (2017) Daratumumab (anti-CD38) induces loss of CD38 on red blood cells. Blood 129(22):3033–3037. https://doi.org/10.1182/blood-2016-11-749432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sullivan HC, Arthur CM, Thompson L, Patel SR, Stowell SR, Hendrickson JE, Lazarus AH (2018) Anti-RhD reduces levels of detectable RhD antigen following anti-RhD infusion. Transfusion 58(2):542–544. https://doi.org/10.1111/trf.14452

    Article  PubMed  PubMed Central  Google Scholar 

  40. Zerra PE, Arthur CM, Chonat S, Maier CL, Mener A, Shin S, Allen JWL, Baldwin WH, Cox C, Verkerke H, Jajosky RP, Tormey CA, Meeks SL, Stowell SR (2020) Fc gamma receptors and complement component 3 facilitate anti-fVIII antibody formation. Front Immunol 11:905. https://doi.org/10.3389/fimmu.2020.00905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Liepkalns JS, Hod EA, Stowell SR, Cadwell CM, Spitalnik SL, Zimring JC (2012) Biphasic clearance of incompatible red blood cells through a novel mechanism requiring neither complement nor Fcgamma receptors in a murine model. Transfusion 52(12):2631–2645. https://doi.org/10.1111/j.1537-2995.2012.03647.x

    Article  CAS  PubMed  Google Scholar 

  42. Maier CL, Mener A, Patel SR, Jajosky RP, Bennett AL, Arthur CM, Hendrickson JE, Stowell SR (2018) Antibody-mediated immune suppression by antigen modulation is antigen-specific. Blood Adv 2(21):2986–3000. https://doi.org/10.1182/bloodadvances.2018018408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zerra PEPS, Jajosky RP, Arthur CM, McCoy JW, Allen JWL, Chonat S, Fasano R, Roback JD, Josephson CD, Hendrickson JE, Stowell SR (2021) Marginal zone B cells mediate a CD4 T cell dependent extrafollicular antibody response following RBC transfusion in mice. Blood 138(8):706–721

    Google Scholar 

  44. Arthur CM, Allen JWL, Verkerke H, Yoo J, Jajosky RP, Girard-Pierce K, Chonat S, Zerra P, Maier C, Rha J, Fasano R, Josephson CD, Roback JD, Stowell SR (2021) Antigen density dictates RBC clearance, but not antigen modulation, following incompatible RBC transfusion in mice. Blood Adv 5(2):527–538. https://doi.org/10.1182/bloodadvances.2020002695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Leffler H, Carlsson S, Hedlund M, Qian Y, Poirier F (2004) Introduction to galectins. Glycoconj J 19(7–9):433–440. https://doi.org/10.1023/B:GLYC.0000014072.34840.04

    Article  Google Scholar 

  46. Leppanen A, Stowell S, Blixt O, Cummings RD (2005) Dimeric galectin-1 binds with high affinity to alpha2,3-sialylated and non-sialylated terminal N-acetyllactosamine units on surface-bound extended glycans. J Biol Chem 280(7):5549–5562

    Article  Google Scholar 

  47. Stowell SR, Qian Y, Karmakar S, Koyama NS, Dias-Baruffi M, Leffler H, McEver RP, Cummings RD (2008) Differential roles of galectin-1 and galectin-3 in regulating leukocyte viability and cytokine secretion. J Immunol 180(5):3091–3102

    Article  CAS  Google Scholar 

  48. Lyer PN, Wilkinson KD, Goldstein LJ (1976) An -N-acetyl-D-glycosamine binding lectin from Bandeiraea simplicifolia seeds. Arch Biochem Biophys 177(1):330–333

    Article  CAS  Google Scholar 

  49. Merkle RK, Cummings RD (1987) Relationship of the terminal sequences to the length of poly-N-acetyllactosamine chains in asparagine-linked oligosaccharides from the mouse lymphoma cell line BW5147. Immobilized tomato lectin interacts with high affinity with glycopeptides containing long poly-N-acetyllactosamine chains. J Biol Chem 262(17):8179–8189

    Article  CAS  Google Scholar 

  50. Cedeno-Laurent F, Barthel SR, Opperman MJ, Lee DM, Clark RA, Dimitroff CJ (2010) Development of a nascent galectin-1 chimeric molecule for studying the role of leukocyte galectin-1 ligands and immune disease modulation. J Immunol 185(8):4659–4672. https://doi.org/10.4049/jimmunol.1000715

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard D. Cummings .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Leppänen, A., Arthur, C.M., Stowell, S.R., Cummings, R.D. (2022). Examination of Whole-Cell Galectin Binding by Solid Phase and Flow Cytometric Analysis. In: Stowell, S.R., Arthur, C.M., Cummings, R.D. (eds) Galectins. Methods in Molecular Biology, vol 2442. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2055-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2055-7_11

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2054-0

  • Online ISBN: 978-1-0716-2055-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics