Skip to main content

Super-Resolution Radial Fluctuations (SRRF) Microscopy

  • Protocol
  • First Online:
Fluorescent Microscopy

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2440))

Abstract

Super-resolution Radial Fluctuations (SRRF) imaging is a computational approach to fixed and live-cell super-resolution microscopy that is highly accessible to life science researchers since it uses common microscopes and open-source software plugins for ImageJ. This allows users to generate super-resolution images using the same equipment, fluorophores, fluorescent proteins and methods they routinely employ for their studies without specialized sample preparations or reagents. Here, we discuss a step-by-step workflow for acquiring and analyzing images using the NanoJ-SRRF software developed by the Ricardo Henriques group, with a focus on imaging chromatin. Increased accessibility of affordable super-resolution imaging techniques is an important step in extending the reach of this revolution in cellular imaging to a greater number of laboratories.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Dellaire G, Nisman R, Bazett-Jones DP (2004) Correlative light and electron spectroscopic imaging of chromatin in situ. Methods Enzymol 375:456–478

    Article  CAS  PubMed  Google Scholar 

  2. Guo J, Larabell CA (2019) Soft X-ray tomography: virtual sculptures from cell cultures. Curr Opin Struct Biol 58:324–332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Feng H, Wang X, Xu Z et al (2018) Super-resolution fluorescence microscopy for single cell imaging. Adv Exp Med Biol 1068:59–71

    Article  CAS  PubMed  Google Scholar 

  4. Jacquemet G, Carisey AF, Hamidi H et al (2020) The cell biologist’s guide to super-resolution microscopy. J Cell Sci 133

    Google Scholar 

  5. Gustafsson N, Culley S, Ashdown G et al (2016) Fast live-cell conventional fluorophore nanoscopy with ImageJ through super-resolution radial fluctuations. Nat Commun 7:12471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Laine RF, Tosheva KL, Gustafsson N et al (2019) NanoJ: a high-performance open-source super-resolution microscopy toolbox. J Phys D Appl Phys 52:163001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Acharya A, Bogdanov AM, Grigorenko BL et al (2017) Photoinduced chemistry in fluorescent proteins: curse or blessing? Chem Rev 117:758–795

    Article  CAS  PubMed  Google Scholar 

  8. Bagshaw CR, Cherny D (2006) Blinking fluorophores: what do they tell us about protein dynamics? Biochem Soc Trans 34:979–982

    Article  CAS  PubMed  Google Scholar 

  9. van de Linde S, Sauer M (2014) How to switch a fluorophore: from undesired blinking to controlled photoswitching. Chem Soc Rev 43:1076–1087

    Article  PubMed  Google Scholar 

  10. Dertinger T, Colyer R, Iyer G et al (2009) Fast, background-free, 3D super-resolution optical fluctuation imaging (SOFI). Proc Natl Acad Sci U S A 106:22287–22292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Culley S, Tosheva KL, Matos Pereira P et al (2018) SRRF: Universal live-cell super-resolution microscopy. Int J Biochem Cell Biol 101:74–79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhang X, Chen X, Zeng Z et al (2015) Development of a reversibly switchable fluorescent protein for super-resolution optical fluctuation imaging (SOFI). ACS Nano 9:2659–2667

    Article  CAS  PubMed  Google Scholar 

  13. Almada P, Culley S, Henriques R (2015) PALM and STORM: into large fields and high-throughput microscopy with sCMOS detectors. Methods 88:109–121

    Article  CAS  PubMed  Google Scholar 

  14. Stubb A, Laine RF, Miihkinen M et al (2020) Fluctuation-based super-resolution traction force microscopy. Nano Lett 20:2230–2245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lee J, Salsman J, Foster J et al (2020) Lipid-associated PML structures assemble nuclear lipid droplets containing CCTα and Lipin1. Life Sci Alliance 3. https://doi.org/10.26508/lsa.202000751

  16. Pinder J, Salsman J, Dellaire G (2015) Nuclear domain “knock-in” screen for the evaluation and identification of small molecule enhancers of CRISPR-based genome editing. Nucleic Acids Res 43:9379–9392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bucevičius J, Keller-Findeisen J, Gilat T et al (2019) Rhodamine-Hoechst positional isomers for highly efficient staining of heterochromatin. Chem Sci 10:1962–1970

    Article  PubMed  Google Scholar 

  18. Schindelin J, Arganda-Carreras I, Frise E et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682

    Article  CAS  PubMed  Google Scholar 

  19. Culley S, Albrecht D, Jacobs C et al (2018) Quantitative mapping and minimization of super-resolution optical imaging artifacts. Nat Methods 15:263–266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lam AJ, St-Pierre F, Gong Y et al (2012) Improving FRET dynamic range with bright green and red fluorescent proteins. Nat Methods 9:1005–1012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Shaner NC, Lambert GG, Chammas A et al (2013) A bright monomeric green fluorescent protein derived from Branchiostoma lanceolatum. Nat Methods 10:407–409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Fabricius V, Lefèbre J, Geertsema H et al (2018) Rapid and efficient C-terminal labeling of nanobodies for DNA-PAINT. J Phys D Appl Phys 51:474005

    Article  CAS  Google Scholar 

  23. Carrington G, Tomlinson D, Peckham M (2019) Exploiting nanobodies and Affimers for superresolution imaging in light microscopy. MBoC 30:2737–2740

    Google Scholar 

  24. de Beer MA, Giepmans BNG (2020) Nanobody-based probes for subcellular protein identification and visualization. Front Cell Neurosci 14:573278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Jež M, Bas T, Veber M et al (2013) The hazards of DAPI photoconversion: effects of dye, mounting media and fixative, and how to minimize the problem. Histochem Cell Biol 139:195–204

    Article  CAS  PubMed  Google Scholar 

  26. Nieuwenhuizen RPJ, Lidke KA, Bates M et al (2013) Measuring image resolution in optical nanoscopy. Nat Methods 10:557–562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Funding for microscope upgrades for SRRF imaging were funded by an Equipment Grant from the Dalhousie Medical Research Foundation (DMRF), and a Research, Tools, & Instruments (RTI) grant from the Natural Sciences and Engineering Research Council of Canada (NSERC). We would also like to thank Nvidia Corporation for the gift of the Titan V GPU used in this study obtained through their Higher Education and Research grants program. We would also like to thank Dr. Ricardo Henriques (Instituto Gulbenkian de Ciência, Portugal and University College London, UK) and his research group for their advice and access to the development-stage NanoJ-LiveSRRF software. Finally, we thank Dr. Gražvydas Lukinavičius and Dr. Jonas Bucevičius (Research group for chromatin labeling and imaging, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany) for the generous gift of the 5-TMR-Hoechst DNA dye used in this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Graham Dellaire .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Salsman, J., Dellaire, G. (2022). Super-Resolution Radial Fluctuations (SRRF) Microscopy. In: Heit, B. (eds) Fluorescent Microscopy. Methods in Molecular Biology, vol 2440. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2051-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2051-9_14

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2050-2

  • Online ISBN: 978-1-0716-2051-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics