Skip to main content

Quantifiable Intravital Light Sheet Microscopy

  • Protocol
  • First Online:
Fluorescent Microscopy

Abstract

Live imaging of zebrafish embryos that maintains normal development can be difficult to achieve due to a combination of sample mounting, immobilization, and phototoxicity issues that, once overcome, often still results in image quality sufficiently poor that computer-aided analysis or even manual analysis is not possible. Here, we describe our mounting strategy for imaging the zebrafish midbrain–hindbrain boundary (MHB) with light sheet fluorescence microscopy (LSFM) and pilot experiments to create a study-specific set of parameters for semiautomatically tracking cellular movements in the embryonic midbrain primordium during zebrafish segmentation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wait EC, Reiche MA, Chew T-L (2020) Hypothesis-driven quantitative fluorescence microscopy – the importance of reverse-thinking in experimental design. J Cell Sci 133:jcs250027

    Article  CAS  PubMed  Google Scholar 

  2. Gutzman JH, Sahu SU (2015) Kwas C (2015) non-muscle myosin IIA and IIB differentially regulate cell shape changes during zebrafish brain morphogenesis. Dev Biol 397:103–115

    Article  CAS  PubMed  Google Scholar 

  3. Kesevan G, Machete A, Hans S, Brand M (2020) Cell-fate plasticity, adhesion and cell sorting complementarily establish a sharp midbrain-hindbrain boundary. Development. Development 147:dev185882

    Google Scholar 

  4. Dray N, Bedu S, Vuillemin N, Alunni A, Coolen M, Krecsmarik M, Supatto W, Beaurepaire E, Bally-Cuif L (2015) Large-scale live imaging of adult neural stem cells in their endogenous niche. Development 142:3592–3600

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Gibbs HC, Chang-Gonzalez A, Hwang W, Yeh AT, Lekven AC (2017) Midbrain-hindbrain boundary morphogenesis: at the intersection of Wnt and Fgf Signaling. Front Neuroanat 11:64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Liu T-L, Upadhyayula S, Milkie DE et al (2018) Observing the cell in its native state: imaging subcellular dynamics in multicellular organisms. Science. Science 360:eaaq1392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kumar M, Kishore S, Nasenbeny J, McLean DL, Kozorovitskiy Y (2018) Integrated one- and two-photon scanned oblique plan illumination (SOPi) microscopy for rapid volumetric imaging. Opt Express 26:10

    Google Scholar 

  8. Voleti V, Patel KB, Li W, Perez Campos C et al (2018) Real-time volumetric microscopy of in vivo dynamics and large-scale samples with SCAPE 2.0. Nat Methods 15:1054–1062

    Google Scholar 

  9. Ulman V, Maska M, Magnusson KEG et al (2017) An objective comparison of cell tracking algorithms. Nat Methods 14(12):1141–1152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kurokawa D, Sakurai Y, Inoue A et al (2006) Evolutionary constraint on Otx2 neuroectoderm enhancers-deep conservation from skate to mouse and unique divergence in teleost. PNAS 103(51):19350–19355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Schindelin J, Arganda-Carreras I, Frise E et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9(7):676–682

    Article  CAS  PubMed  Google Scholar 

  12. Haase R, Royer LA, Steinback P et al (2020) CLIJ: GPU-accelerated image processing for everyone. Nat Methods 17:5–6

    Article  CAS  PubMed  Google Scholar 

  13. Weigert M, Schmidt U, Haase R, Sugawara K, Myers G (2020) Star-convex polyhedra for 3D object detection and segmentation in microscopy. Proc IEEE/CVF WACV 2020:3666–3673

    Google Scholar 

  14. Tinevez J-Y, Perry N, Schindelin J et al (2017) TrackMate: an open and extensible platform for single-particle tracking. Methods 115:80–90

    Article  CAS  PubMed  Google Scholar 

  15. Horl D, Rusak FR, Preusser F et al (2019) BigStitcher:reconstructing high-resolution image datasets of cleared and expanded samples. Nat Methods 16:870–874

    Article  CAS  PubMed  Google Scholar 

  16. Wolff C, Tinevez J-Y, Pietzsch T (2018) Multi-view light-sheet imaging and tracking with the MaMuT software reveals the cell lineage of a direct developing arthropod limb. elife 7:e34410

    Article  PubMed  PubMed Central  Google Scholar 

  17. Kaufmann A, Mickoleit M, Weber M, Huisken J (2012) Multilayer mounting enables long-term imaging of zebrafish development in a light sheet microscope. Development 139:3242–3247

    Article  CAS  PubMed  Google Scholar 

  18. Megason S (2009) In toto imaging of embryogenesis with confocal time-lapse microscopy. In: Lieschke GJ et al (eds) Zebrafish Methods in molecular biology, vol 546. Humana Press, New York, NY pg 317–332

    Google Scholar 

  19. Hirsinger E, Steventon B (2017) A versatile mounting method for long term imaging of zebrafish development. J Vis Exp 119:e55210

    Google Scholar 

  20. Schmied C, Tomancak P (2016) Sample preparation and mounting of drosophila embryos for multiview light sheet microscopy. In: Dahmann C (ed) Drosophila: methods and protocols, Methods in molecular biology, vol 1478. Humana Press, New York, NY pg 189–202

    Google Scholar 

  21. Leung L, Klopper AV, Grill SW, Harris WA, Norden C (2011) Apical migration of nuclei during G2 is a prerequisite for all nuclear motion in zebrafish neuroepithelia. Development 138:5003–5013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Langenberg T, Brand M (2005) Lineage restriction maintains a stable organizer cell population at the zebrafish midbrain-hindbrain boundary. Development 132:3209–3216

    Article  CAS  PubMed  Google Scholar 

  23. Lambert TJ (2019) FPbase: a community-editable fluorescent protein database. Nat Methods 16:277–278

    Article  CAS  PubMed  Google Scholar 

  24. Oskui SM, Diamante G, Liao C et al (2016) Assessing and reducing the toxicity of 3D-printed parts. Environ Sci Technol Lett 3:1–6

    Article  CAS  Google Scholar 

  25. Klaeinhans DS, Lecaudey V (2019) Standardized mounting method of (zebrafish) embryos using a 3D-printed stamp for high-content, semi-automated confocal imaging. BMC Biotechnol 19:68

    Article  Google Scholar 

Download references

Acknowledgments

We thank Dr. Bruce Riley, Dr. Jennifer Dong, and Dr. Jo-Ann Fleming for care and maintenance of zebrafish colonies and facilities, and we thank Texas A&M University’s Microscopy and Imaging Center for access to the Zeiss Z.1 LSFM. The plasmid containing citrine:H2b was a gift from S.Megason. This work was supported by the Silicon Valley Community Foundation (CZI Imaging Scientist Program, 2019-198168) and the National Institutes of Health (R01 NS088564 and R21 NS109504).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Holly C. Gibbs .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Gibbs, H.C. et al. (2022). Quantifiable Intravital Light Sheet Microscopy. In: Heit, B. (eds) Fluorescent Microscopy. Methods in Molecular Biology, vol 2440. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2051-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2051-9_11

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2050-2

  • Online ISBN: 978-1-0716-2051-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics