Skip to main content

Selection of Aptamer for N-Methyl Mesoporphyrin IX to Develop Porphyrin Metalation DNAzyme

  • Protocol
  • First Online:
DNAzymes

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2439))

  • 771 Accesses

Abstract

Mesoporphyrin IX (MPIX) contains a planar macrocycle center that can interact with various divalent metal ions through the exposed binding sites, leading to the metalation of MPIX. The DNA aptamers for porphyrin molecules usually display different catalytic functions (termed deoxyribozymes or DNAzymes), which can accelerate such chemical reactions. Inspired by this, an affinity chromatography selection approach was designed for identifying a porphyrin metalation DNAzyme. In our experiment, N-methyl mesoporphyrin IX (NMM), an analog of MPIX, is used as the target molecule, owing to its stable and high fluorescence enhancement after combining with specific oligonucleotides. Our results showed that the selected aptamer Nm1 is capable of binding to NMM with a low micromolar dissociation constant (0.75 ± 0.08 μM) and displays a catalytic activity for MPIX metalation with 3.3-fold rate enhancement. The protocol for isolation of such a porphyrin metalation DNAzyme is described in detail here.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346(6287):818–822

    Article  CAS  Google Scholar 

  2. Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249(4968):505–510

    Article  CAS  Google Scholar 

  3. Hermann T, Patel DJ (2000) Adaptive recognition by nucleic acid aptamers. Science 287(5454):820–825

    Article  CAS  Google Scholar 

  4. Tan W, Wang H, Chen Y, Zhang X, Zhu H, Yang C, Yang R, Liu C (2011) Molecular aptamers for drug delivery. Trends Biotechnol 29(12):634–640

    Article  CAS  Google Scholar 

  5. Yan S-R, Foroughi MM, Safaei M, Jahani S, Ebrahimpoor N, Borhani F, Baravati NRZ, Aramesh-Boroujeni Z, Foong LK (2020) A review: recent advances in ultrasensitive and highly specific recognition aptasensors with various detection strategies. Int J Biol Macromol 155:184–207

    Article  CAS  Google Scholar 

  6. Willner I, Shlyahovsky B, Zayats M, Willner B (2008) DNAzymes for sensing, nanobiotechnology and logic gate applications. Chem Soc Rev 37(6):1153–1165

    Article  CAS  Google Scholar 

  7. Teller C, Shimron S, Willner I (2009) Aptamer−DNAzyme hairpins for amplified biosensing. Anal Chem 81(21):9114–9119

    Article  CAS  Google Scholar 

  8. Li W, Li Y, Liu Z, Lin B, Yi H, Xu F, Nie Z, Yao S (2016) Insight into G-quadruplex-hemin DNAzyme/RNAzyme: adjacent adenine as the intramolecular species for remarkable enhancement of enzymatic activity. Nucleic Acids Res 44(15):7373–7384

    Article  CAS  Google Scholar 

  9. Norouzi A, Ravan H, Mohammadi A, Hosseinzadeh E, Norouzi M, Fozooni T (2018) Aptamer–integrated DNA nanoassembly: a simple and sensitive DNA framework to detect cancer cells. Anal Chim Acta 1017:26–33

    Article  CAS  Google Scholar 

  10. Conn MM, Prudent JR, Schultz PG (1996) Porphyrin metalation catalyzed by a small RNA molecule. J Am Chem Soc 118(29):7012–7013

    Article  CAS  Google Scholar 

  11. Ren R, Wang L-L, Ding T-R, Li X-M (2014) Enzyme-free amplified detection of nucleic acids based on self-sustained replication of RNAzyme and its application in tumor cell detection. Biosens Bioelectron 54:122–127

    Article  CAS  Google Scholar 

  12. Li Y, Sen D (1996) A catalytic DNA for porphyrin metallation. Nat Struct Biol 3(9):743–747

    Article  CAS  Google Scholar 

  13. Paniel N, Istamboulié G, Triki A, Lozano C, Barthelmebs L, Noguer T (2017) Selection of DNA aptamers against penicillin G using capture-SELEX for the development of an impedimetric sensor. Talanta 162:232–240

    Article  CAS  Google Scholar 

  14. Duan N, Gong W, Wu S, Wang Z (2017) An ssDNA library immobilized SELEX technique for selection of an aptamer against ractopamine. Anal Chim Acta 961:100–105

    Article  CAS  Google Scholar 

  15. Komarova N, Andrianova M, Glukhov S, Kuznetsov A (2018) Selection, characterization, and application of ssDNA aptamer against furaneol. Molecules 23(12):3159

    Article  Google Scholar 

  16. Guo L, Nie D, Qiu C, Zheng Q, Wu H, Ye P, Hao Y, Fu F, Chen G (2012) A G-quadruplex based label-free fluorescent biosensor for lead ion. Biosens Bioelectron 35(1):123–127

    Article  CAS  Google Scholar 

  17. Yett A, Lin LY, Beseiso D, Miao J, Yatsunyk LA (2019) N-methyl mesoporphyrin IX as a highly selective light-up probe for G-quadruplex DNA. J Porphyr Phthalocyanines 23:1195–1215

    Article  CAS  Google Scholar 

  18. Zadeh JN, Steenberg CD, Bois JS, Wolfe BR, Pierce MB, Khan AR, Dirks RM, Pierce NA (2011) NUPACK: analysis and design of nucleic acid systems. J Comput Chem 32(1):170–173

    Article  CAS  Google Scholar 

  19. Huang CY (1982) Determination of binding stoichiometry by the continuous variation method: the job plot. In: Purich DL (ed) Methods enzymol, vol 87. Academic Press, Cambridge, pp 509–525

    Google Scholar 

  20. Yang L, Ding P, Luo Y, Wang J, Lv H, Li W, Cao Y, Pei R (2019) Exploration of catalytic nucleic acids on porphyrin metalation and peroxidase activity by in vitro selection of aptamers for N-methyl mesoporphyrin IX. ACS Comb Sci 21(2):83–89

    Article  CAS  Google Scholar 

  21. Yang J, Bowser MT (2013) Capillary electrophoresis–SELEX selection of catalytic DNA aptamers for a small-molecule porphyrin target. Anal Chem 85(3):1525–1530

    Article  CAS  Google Scholar 

  22. Owczarzy R, Tataurov AV, Wu Y, Manthey JA, McQuisten KA, Almabrazi HG, Pedersen KF, Lin Y, Garretson J, McEntaggart NO (2008) IDT SciTools: a suite for analysis and design of nucleic acid oligomers. Nucleic Acids Res 36(2):163–169

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Natural Science Foundation of China (21575154, 21775160, 81801837, 31800685), the CAS/SAFEA International Innovation Teams program, and the Science Foundation of Jiangsu Province (BE2016680, BE2018665, BK20180250, BK20180258, BK20180261).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renjun Pei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Yang, L., Cao, Y., Pei, R. (2022). Selection of Aptamer for N-Methyl Mesoporphyrin IX to Develop Porphyrin Metalation DNAzyme. In: Steger, G., Rosenbach, H., Span, I. (eds) DNAzymes. Methods in Molecular Biology, vol 2439. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2047-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2047-2_2

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2046-5

  • Online ISBN: 978-1-0716-2047-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics