Skip to main content

Methods for the Study of Apical Constriction During Ascidian Gastrulation

  • Protocol
  • First Online:
Cell Polarity Signaling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2438))

  • 1252 Accesses

Abstract

Gastrulation is the first major morphogenetic event during ascidian embryogenesis. Ascidian gastrulation begins with the invagination of the endodermal progenitors, a two-step process driven by individual cell shape changes of endoderm cells. During the first step, endoderm cells constrict apically, thereby flattening the vegetal side of the embryo. During the second step, endoderm cells shorten along their apicobasal axis and tissue invagination ensues. Individual cell shape changes are mediated by localized actomyosin contractile activity. Here, we describe methods used during ascidian endoderm apical constriction to study myosin activity and cellular morphodynamics with confocal and light sheet microscopy and followed by quantitative image analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Guignard L et al (2020) Contact area-dependent cell communication and the morphological invariance of ascidian embryogenesis. Science 369(6500):eaar5663. https://doi.org/10.1126/science.aar5663

    Article  CAS  PubMed  Google Scholar 

  2. Leggio B, Laussu J, Carlier A, Godin C, Lemaire P, Faure E (2019) MorphoNet: an interactive online morphological browser to explore complex multi-scale data. Nat Commun 10(1):2812. https://doi.org/10.1038/s41467-019-10668-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sherrard K, Robin F, Lemaire P, Munro E (2010) Sequential activation of apical and basolateral contractility drives ascidian endoderm invagination. Curr Biol 20(17):1499–1510. https://doi.org/10.1016/j.cub.2010.06.075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Fiuza U-M, Negishi T, Rouan A, Yasuo H, Lemaire P (2020) A Nodal/Eph signalling relay drives the transition from apical constriction to apico-basal shortening in ascidian endoderm invagination. Development 147(15):dev186965. https://doi.org/10.1242/dev.186965

    Article  CAS  PubMed  Google Scholar 

  5. Hashimoto H, Robin FB, Sherrard KM, Munro EM (2015) Sequential contraction and exchange of apical junctions drives zippering and neural tube closure in a simple chordate. Dev Cell 32(2):241–255. https://doi.org/10.1016/j.devcel.2014.12.017

    Article  CAS  PubMed  Google Scholar 

  6. Weber M, Huisken J (2011) Light sheet microscopy for real-time developmental biology. Curr Opin Genet Dev 21(5):566–572. https://doi.org/10.1016/j.gde.2011.09.009

    Article  CAS  PubMed  Google Scholar 

  7. Siedentopf H, Zsigmondy R (1902) Uber Sichtbarmachung und Größenbestimmung ultramikoskopischer Teilchen, mit besonderer Anwendung auf Goldrubingläser. Ann Phys 315(1):1–39. https://doi.org/10.1002/andp.19023150102

    Article  Google Scholar 

  8. Voie AH, Burns DH, Spelman FA (1993) Orthogonal-plane fluorescence optical sectioning: three-dimensional imaging of macroscopic biological specimens. J Microsc 170(3):229–236. https://doi.org/10.1111/j.1365-2818.1993.tb03346.x

    Article  CAS  PubMed  Google Scholar 

  9. Huisken J, Swoger J, Del Bene F, Wittbrodt J, Stelzer EHK (2004) Optical sectioning deep inside live embryos by selective plane illumination microscopy. Science 305(5686):1007–1009. https://doi.org/10.1126/science.1100035

    Article  CAS  PubMed  Google Scholar 

  10. Keller PJ, Stelzer EHK (2008) Quantitative in vivo imaging of entire embryos with digital scanned laser light sheet fluorescence microscopy. Curr Opin Neurobiol 18(6):624–632. https://doi.org/10.1016/j.conb.2009.03.008

    Article  CAS  PubMed  Google Scholar 

  11. Daetwyler S, Huisken J (2016) Fast fluorescence microscopy with light sheets. Biol Bull 231(1):14–25. https://doi.org/10.1086/689588

    Article  PubMed  Google Scholar 

  12. Huisken J, Stainier DYR (2007) Even fluorescence excitation by multidirectional selective plane illumination microscopy (mSPIM). Opt Lett 32(17):2608–2610. https://doi.org/10.1364/ol.32.002608

    Article  PubMed  Google Scholar 

  13. Krzic U, Gunther S, Saunders TE, Streichan SJ, Hufnagel L (2012) Multiview light-sheet microscope for rapid in toto imaging. Nat Methods 9(7):730–733. https://doi.org/10.1038/nmeth.2064

    Article  CAS  PubMed  Google Scholar 

  14. Tomer R, Khairy K, Amat F, Keller PJ (2012) Quantitative high-speed imaging of entire developing embryos with simultaneous multiview light-sheet microscopy. Nat Methods 9(7):755–763. https://doi.org/10.1038/nmeth.2062

    Article  CAS  PubMed  Google Scholar 

  15. Chhetri RK, Amat F, Wan Y, Höckendorf B, Lemon WC, Keller PJ (2015) Whole-animal functional and developmental imaging with isotropic spatial resolution. Nat Methods 12(12):1171–1178. https://doi.org/10.1038/nmeth.3632

    Article  CAS  PubMed  Google Scholar 

  16. Wu Y et al (2011) Inverted selective plane illumination microscopy (iSPIM) enables coupled cell identity lineaging and neurodevelopmental imaging in Caenorhabditis elegans. Proc Natl Acad Sci 108(43):17708–17713. https://doi.org/10.1073/pnas.1108494108

    Article  PubMed  PubMed Central  Google Scholar 

  17. Kumar A et al (2014) Dual-view plane illumination microscopy for rapid and spatially isotropic imaging. Nat Protoc 9(11):2555–2573. https://doi.org/10.1038/nprot.2014.172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Strnad P et al (2016) Inverted light-sheet microscope for imaging mouse pre-implantation development. Nat Methods 13(2):139–142. https://doi.org/10.1038/nmeth.3690

    Article  CAS  PubMed  Google Scholar 

  19. de Medeiros G, Norlin N et al (2015) Confocal multiview light-sheet microscopy. Nat Commun 6:8881. https://doi.org/10.1038/ncomms9881

    Article  CAS  PubMed  Google Scholar 

  20. Prodon F et al (2010) Dual mechanism controls asymmetric spindle position in ascidian germ cell precursors. Development 137(12):2011–2021. https://doi.org/10.1242/dev.047845

    Article  CAS  PubMed  Google Scholar 

  21. Hotta K et al (2007) A web-based interactive developmental table for the ascidian Ciona intestinalis, including 3D real-image embryo reconstructions: I. From fertilized egg to hatching larva. Dev Dyn 236(7):1790–1805. https://doi.org/10.1002/dvdy.21188

    Article  PubMed  Google Scholar 

  22. Carroll M, Levasseur M, Wood C, Whitaker M, Jones KT, McDougall A (2003) Exploring the mechanism of action of the sperm-triggered calcium-wave pacemaker in ascidian zygotes. J Cell Sci 116(24):4997–5004. https://doi.org/10.1242/jcs.00846

    Article  CAS  PubMed  Google Scholar 

  23. Stegmaier J et al (2015) Real-time three-dimensional cell segmentation in large-scale microscopy data of developing embryos. Dev Cell 36(2):225–240. https://doi.org/10.1016/j.devcel.2015.12.028

    Article  CAS  Google Scholar 

  24. Melak M, Plessner M, Grosse R (2017) Actin visualization at a glance. J Cell Sci 130(3):525–530. https://doi.org/10.1242/jcs.189068

    Article  PubMed  Google Scholar 

  25. Passamaneck YJ, Hadjantonakis A-K, Di Gregorio A (2007) Dynamic and polarized muscle cell behaviors accompany tail morphogenesis in the ascidian Ciona intestinalis. PLoS One 2(8):e714. https://doi.org/10.1371/journal.pone.0000714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Prodon F, Hanawa K, Nishida H (2009) Actin microfilaments guide the polarized transport of nuclear pore complexes and the cytoplasmic dispersal of Vasa mRNA during GVBD in the ascidian Halocynthia roretzi. Dev Biol 330(2):377–388. https://doi.org/10.1016/j.ydbio.2009.04.006

    Article  CAS  PubMed  Google Scholar 

  27. Sensui N, Yoshida M, Morisawa M (2001) Roles of MLCK and PI3 kinase on deformation and ooplasmic segregation at fertilization in the egg of Ciona savignyi. In: Sawada H, Yokosawa H, Lambert CC (eds) The biology of Ascidians. Springer, Tokyo, pp 92–96

    Chapter  Google Scholar 

  28. Guglielmi G, Falk HJ, De Renzis S (2016) Optogenetic control of protein function: from intracellular processes to tissue morphogenesis. Trends Cell Biol 26(11):864–874. https://doi.org/10.1016/j.tcb.2016.09.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Krueger D, Izquierdo E, Viswanathan R, Hartmann J, Pallares Cartes C, De Renzis S (2019) Principles and applications of optogenetics in developmental biology. Development 146(20):22. https://doi.org/10.1242/dev.175067

    Article  CAS  Google Scholar 

  30. Colombelli J, Solon J (2013) Force communication in multicellular tissues addressed by laser nanosurgery. Cell Tissue Res 352(1):133–147. https://doi.org/10.1007/s00441-012-1445-1

    Article  PubMed  Google Scholar 

  31. Schindelin J et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9(7):676–682. https://doi.org/10.1038/nmeth.2019

    Article  CAS  Google Scholar 

  32. Preibisch S, Saalfeld S, Schindelin J, Tomancak P (2010) Software for bead-based registration of selective plane illumination microscopy data. Nat Methods 7(6):418–419. https://doi.org/10.1038/nmeth0610-418

    Article  CAS  PubMed  Google Scholar 

  33. Weigert M et al (2018) Content-aware image restoration: pushing the limits of fluorescence microscopy. Nat Methods 15(12):1090–1097. https://doi.org/10.1038/s41592-018-0216-7

    Article  CAS  PubMed  Google Scholar 

  34. Berg S et al (2019) ilastik: interactive machine learning for (bio)image analysis. Nat Methods 16(12):1226–1232. https://doi.org/10.1038/s41592-019-0582-9

    Article  CAS  PubMed  Google Scholar 

  35. Fernandez R et al (2010) Imaging plant growth in 4D: robust tissue reconstruction and lineaging at cell resolution. Nat Methods 7(7):547–553. https://doi.org/10.1038/nmeth.1472

    Article  CAS  PubMed  Google Scholar 

  36. Mosaliganti KR, Noche RR, Xiong F, Swinburne IA, Megason SG (2012) ACME: automated cell morphology extractor for comprehensive reconstruction of cell membranes. PLoS Comput Biol 8(12):e1002780. https://doi.org/10.1371/journal.pcbi.1002780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wolff C et al (2018) Multi-view light-sheet imaging and tracking with the MaMuT software reveals the cell lineage of a direct developing arthropod limb. eLife 7:e34410. https://doi.org/10.7554/eLife.34410

    Article  PubMed  PubMed Central  Google Scholar 

  38. Arganda-Carreras I et al (2020) ijpb/MorphoLibJ: MorphoLibJ 1.4.2.1. Zenodo, 2020

    Google Scholar 

  39. Caputi L, Andreakis N, Mastrototaro F, Cirino P, Vassillo M, Sordino P (2007) Cryptic speciation in a model invertebrate chordate. Proc Natl Acad Sci 104(22):9364–9369. https://doi.org/10.1073/pnas.0610158104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Brunetti R, Gissi C, Pennati R, Caicci F, Gasparini F, Manni L (2015) Morphological evidence that the molecularly determined Ciona intestinalis type A and type B are different species: Ciona robusta and Ciona intestinalis. J Zool Syst Evol Res 53(3):186–193. https://doi.org/10.1111/jzs.12101

    Article  Google Scholar 

  41. Okado H, Takahashi K (1993) Neural differentiation in cleavage-arrested ascidian blastomeres induced by a proteolytic enzyme. J Physiol 463:269–290. https://doi.org/10.1113/jphysiol.1993.sp019594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the CNRS and the Agence Nationale de la Recherche (Dig-Em project, ANR-14-CE11-0013-01; Morphoscope2 Equipex, ANR-11-EQPX-0029). U.M.F. was supported by the Dig-Em project, by the FRM (SPF20120523969) and by the EMBL Interdisciplinary Postdoc Programme under Marie Curie Actions. P.L. is a CNRS senior staff scientist. We thank Carla Pérez (currently at EPFL, Lausanne) for sharing her Master internship results optimizing Phallusia mammillata salinity incubation conditions. We thank B. Balázs and O. Selchow for discussions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ulla-Maj Fiúza or Patrick Lemaire .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Fiúza, UM., Lemaire, P. (2022). Methods for the Study of Apical Constriction During Ascidian Gastrulation. In: Chang, C., Wang, J. (eds) Cell Polarity Signaling. Methods in Molecular Biology, vol 2438. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2035-9_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2035-9_23

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2034-2

  • Online ISBN: 978-1-0716-2035-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics