Skip to main content

Construction of Molecular Robots from Microtubules for Programmable Swarming

  • Protocol
  • First Online:
Microtubules

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2430))

Abstract

Swarm robotics has been attracting much attention in recent years in the field of robotics. This chapter describes a methodology for the construction of molecular swarm robots through precise control of active self-assembly of microtubules (MTs). Detailed protocols are presented for the construction of molecular robots through conjugation of DNA to MTs and demonstration of swarming of the MTs. The swarming is mediated by DNA-based interaction and photoirradiation which act as processors and sensors respectively for the robots. Furthermore, the required protocols to utilize the swarming of MTs for molecular computation is also described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Murata S, Konagaya A, Kobayashi S, Saito H, Hagiya M (2013) Molecular robotics: A new paradigm for artifacts. New Generat Comput 31:27–45

    Article  Google Scholar 

  2. Hagiya M, Konagaya A, Kobayashi S, Saito H, Murata S (2014) Molecular robots with sensors and intelligence. Acc Chem Res 47:1681–1690

    Article  Google Scholar 

  3. Meng W, Muscat RA, McKee ML, Milnes PJ, El-Sagheer AH, Bath J, Davis BG, Brown T, O’Reilly RK, Turberfield AJ (2016) An autonomous molecular assembler for programmable chemical synthesis. Nat Chem 8:542–548

    Article  Google Scholar 

  4. Zhao D, Neubauer TM, Feringa BL (2015) Dynamic control of chirality in phosphine ligands for enantioselective catalysis. Nat Commun 6:6652

    Article  Google Scholar 

  5. Muraoka T, Kinbara K, Aida T (2006) Mechanical twisting of a guest by a photoresponsive host. Nature 440:512–515

    Article  Google Scholar 

  6. Kassem S, Lee ATL, Leigh DA, Marcos V, Palmer LI, Pisano S (2017) Stereodivergent synthesis with a programmable molecular machine. Nature 549:374–378

    Article  Google Scholar 

  7. Hirokawa N, Noda Y, Tanaka Y, Niwa S (2009) Kinesin superfamily motor proteins and intracellular transport. Nat Rev Mol Cell Biol 10:682–696

    Article  Google Scholar 

  8. Riedel C, Gabizon R, Wilson CAM, Hamadani K, Tsekouras K, Marqusee S, Pressé S, Bustamante C (2015) The heat released during catalytic turnover enhances the diffusion of an enzyme. Nature 517:227–230

    Article  Google Scholar 

  9. Reck-Peterson SL, Redwine WB, Vale RD, Carter AP (2018) The cytoplasmic dynein transport machinery and its many cargoes. Nat Rev Mol Cell Biol 19:382–398

    Article  Google Scholar 

  10. Van den Heuvel MGL, Dekker C (2007) Motor proteins at work for nanotechnology. Science 317:333–336

    Article  Google Scholar 

  11. Saper G, Hess H (2020) Synthetic systems powered by biological molecular motors. Chem Rev 120:288–309

    Article  Google Scholar 

  12. Amrutha AS, Kumar KRS, Kikukawa T, Tamaoki N (2017) Targeted activation of molecular transportation by visible light. ACS Nano 11:12292–12301

    Article  Google Scholar 

  13. Keya JJ, Kayano K, Kabir AMR, Kakugo A (2019) Integration of soft actuators based on a biomolecular motor system to develop artificial machines. In: Soft actuators. Springer, pp 691–709

    Chapter  Google Scholar 

  14. Keya JJ, Kabir AMR, Kakugo A (2020) Synchronous operation of biomolecular engines. Biophys Rev 12:401–409

    Article  Google Scholar 

  15. Bonabeau E, Dorigo M, de RDF MD, Théraulaz G (1999) Swarm intelligence: From natural to artificial systems. Oxford university press

    Book  Google Scholar 

  16. Idan O, Lam A, Kamcev J, Gonzales J, Agarwal A, Hess H (2012) Nanoscale transport enables active self-assembly of millimeter-scale wires. Nano Lett 12:240–245

    Article  Google Scholar 

  17. Kawamura R, Kakugo A, Shikinaka K, Osada Y, Gong JP (2011) Formation of motile assembly of microtubules driven by kinesins. Smart Mater Struct 20:124007

    Article  Google Scholar 

  18. Kim T, Kao M-T, Hasselbrink EF, Meyhöfer E (2007) Active alignment of microtubules with electric fields. Nano Lett 7:211–217

    Article  Google Scholar 

  19. Schroeder V, Korten T, Linke H, Diez S, Maximov I (2013) Dynamic guiding of motor-driven microtubules on electrically heated, smart polymer tracks. Nano Lett 13:3434–3438

    Article  Google Scholar 

  20. Keya JJ, Suzuki R, Kabir AMR, Inoue D, Asanuma H, Sada K, Hess H, Kuzuya A, Kakugo A (2018) DNA-assisted swarm control in a biomolecular motor system. Nat Commun 9:453

    Article  Google Scholar 

  21. Keya JJ, Kabir AMR, Inoue D, Sada K, Hess H, Kuzuya A, Kakugo A (2018) Control of swarming of molecular robots. Sci Rep 8:11756

    Article  Google Scholar 

  22. Castoldi M, Popov AV (2003) Purification of brain tubulin through two cycles of polymerization–depolymerization in a high-molarity buffer. Protein Expr Purif 32:83–88

    Article  Google Scholar 

  23. Case RB, Pierce DW, Hom-Booher N, Hart CL, Vale RD (1997) The directional preference of kinesin motors is specified by an element outside of the motor catalytic domain. Cell 90:959–966

    Article  Google Scholar 

  24. Peloquin J, Komarova Y, Borisy G (2005) Conjugation of fluorophores to tubulin. Nat Methods 2:299–303

    Article  Google Scholar 

  25. Asanuma H, Liang X, Nishioka H, Matsunaga D, Liu M, Komiyama M (2007) Synthesis of azobenzene-tethered DNA for reversible photo-regulation of DNA functions: hybridization and transcription. Nat Protoc 2:203–212

    Article  Google Scholar 

  26. Früh SM, Steuerwald D, Simon U, Vogel V (2012) Covalent Cargo Loading to Molecular Shuttles via Copper-free “Click Chemistry”. Biomacromolecules 13:3908–3911

    Article  Google Scholar 

  27. Kabir AMR, Inoue D, Kakugo A, Kamei A, Gong JP (2011) Prolongation of the active lifetime of a biomolecular motor for in vitro motility assay by using an inert atmosphere. Langmuir 27:13659–13668

    Article  Google Scholar 

  28. Akter M, Keya JJ, Kabir AMR, Asanuma H, Murayama K, Sada K, Kakugo A (2020) Photo-regulated trajectories of gliding microtubules conjugated with DNA. Chem Commun 56:7953–7956

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by Grant-in-Aid for Scientific Research on Innovative Areas “Molecular Robotics” (JSPS KAKENHI Grant Number JP24104004) from Japan Society for the Promotion of Science (JSPS) and Grant in-Aid for Challenging Exploratory Research (JSPS KAKENHI Grant Number 15 K12135).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akira Kakugo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Keya, J.J., Akter, M., Kabir, A.M.R., Rashid, M.R., Kakugo, A. (2022). Construction of Molecular Robots from Microtubules for Programmable Swarming. In: Inaba, H. (eds) Microtubules. Methods in Molecular Biology, vol 2430. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1983-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1983-4_14

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1982-7

  • Online ISBN: 978-1-0716-1983-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics