Skip to main content

Genome Engineering of Hematopoietic Stem Cells Using CRISPR/Cas9 System

  • Protocol
  • First Online:
Stem Cell Assays

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2429))

Abstract

Ex vivo genetic manipulation of autologous hematopoietic stem and progenitor cells (HSPCs) is a viable strategy for the treatment of hematologic and primary immune disorders. Targeted genome editing of HSPCs using the CRISPR-Cas9 system provides an effective platform to edit the desired genomic locus for therapeutic purposes with minimal off-target effects. In this chapter, we describe the detailed methodology for the CRISPR-Cas9 mediated gene knockout, deletion, addition, and correction in human HSPCs by viral and nonviral approaches. We also present a comprehensive protocol for the analysis of genome modified HSPCs toward the erythroid and megakaryocyte lineage in vitro and the long-term multilineage reconstitution capacity in the recently developed NBSGW mouse model that supports human erythropoiesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Morgan RA, Gray D, Lomova A, Kohn DB (2018) Hematopoietic stem cell gene therapy—Progress and lessons learned. Cell Stem Cell 21(5):574–590

    Article  Google Scholar 

  2. Melve GK, Ersvaer E, Eide GE, Kristoffersen EK, Bruserud O (2018) Peripheral blood stem cell mobilization in healthy donors by granulocyte colony-stimulating factor causes preferential mobilization of lymphocyte subsets. Front Immunol 9:845

    Article  Google Scholar 

  3. Cavazzana M, Bushman FD, Miccio A, André-Schmutz I, Six E (2019) Gene therapy targeting haematopoietic stem cells for inherited diseases: progress and challenges. Nat Rev Drug Discov 18(6):447–462

    Article  CAS  Google Scholar 

  4. Gaj T, Staahl BT, Rodrigues GMC, Limsirichai P, Ekman FK, Doudna JA, Schaffer DV (2017) Targeted gene knock-in by homology-directed genome editing using Cas9 ribonucleoprotein and AAV donor delivery. Nucleic Acids Res 45(11):e98

    Article  CAS  Google Scholar 

  5. Richardson CD, Ray GJ, DeWitt MA, Curie GL, Corn JE (2016) Enhancing homology-directed genome editing by catalytically active and inactive CRISPR-Cas9 using asymmetric donor DNA. Nat Biotechnol 34(3):339–344

    Article  CAS  Google Scholar 

  6. Pattabhi S, Lotti SN, Berger MP, Singh S, Lux CT, Jacoby K, Lee C, Negre O, Scharenberg AM, Rawlings DJ (2019) In vivo outcome of homology-directed repair at the HBB gene in HSC using alternative donor template delivery methods. Mol Ther Nucleic Acids 17:277–288

    Article  CAS  Google Scholar 

  7. Bak RO, Dever DP, Porteus MH (2018) CRISPR/Cas9 genome editing in human hematopoietic stem cells. Nat Protoc 13(2):358–376

    Article  CAS  Google Scholar 

  8. Gaudelli NM, Lam K, Rees HA, Solá-Esteves NM, Barrera LA, Born DA, Edwards A, Gehrke JM, Lee S-J, Liquori AJ, Murray R, Packer MS, Rinaldi C, Slaymaker IM, Yen J, Young LE, Ciaramella G (2020) Directed evolution of adenine base editors with increased activity and therapeutic application. Nat Biotechnol 38(7):892–900

    Article  CAS  Google Scholar 

  9. Tsai SQ, Zheng Z, Nguyen NT, Liebers M, Topkar VV, Thapar V, Wyvekens N, Khayter C, John Iafrate A, Le LP, Aryee MJ, Joung JK (2014) GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nat Biotechnol 33(2):187–197

    Article  Google Scholar 

  10. Doman JL, Raguram A, Newby GA, Liu DR (2020) Evaluation and minimization of Cas9-independent off-target DNA editing by cytosine base editors. Nat Biotechnol 38(5):620–628

    Article  CAS  Google Scholar 

  11. Tsai SQ, Nguyen NT, Malagon-Lopez J, Topkar VV, Aryee MJ, Keith Joung J (2017) CIRCLE-seq: a highly sensitive in vitro screen for genome-wide CRISPR-Cas9 nuclease off-targets. Nat Methods 14(6):607–614

    Article  CAS  Google Scholar 

  12. Gabriel R, Kutschera I, Bartholomae CC, von Kalle C, Schmidt M (2014) Linear amplification mediated PCR – localization of genetic elements and characterization of unknown flanking DNA. J Vis Exp (88):e51543

    Google Scholar 

  13. McIntosh BE, Brown ME, Duffin BM, Maufort JP, Vereide DT, Slukvin II, Thomson JA (2015) Nonirradiated NOD,B6.SCID Il2rγ-/- KitW41/W41 (NBSGW) mice support multilineage engraftment of human hematopoietic cells. Stem Cell Reports 4(2):171–180

    Article  CAS  Google Scholar 

  14. Tajer P, Pike-Overzet K, Arias S, Havenga M, Staal FJT (2019) Ex vivo expansion of hematopoietic stem cells for therapeutic purposes: lessons from development and the niche. Cell 8:169

    Article  CAS  Google Scholar 

  15. Psatha N, Reik A, Phelps S, Zhou Y, Dalas D, Yannaki E, Levasseur DN, Urnov FD, Holmes MC, Papayannopoulou T (2018) Disruption of the BCL11A erythroid enhancer reactivates fetal hemoglobin in erythroid cells of patients with b-thalassemia major. Mol Ther Methods Clin Dev 10:313–326

    Article  CAS  Google Scholar 

  16. Radtke S, Pande D, Cui M, Perez AM, Chan Y-Y, Enstrom M, Schmuck S, Berger A, Eunson T, Adair JE, Kiem H-P (2020) Purification of human CD34+ CD90+ HSCs reduces target cell population and improves lentiviral transduction for gene therapy. Mol Ther Methods Clin Dev 18:679–691

    Article  CAS  Google Scholar 

  17. Drake AC, Khoury M, Leskov I, Iliopoulou BP, Fragoso M, Lodish H, Chen J (2011) Human CD34+CD133+hematopoietic stem cells cultured with growth factors including Angptl5 efficiently engraft adult NOD-SCID Il2rγ−/− (NSG) mice. PLoS One 6:e18382

    Article  CAS  Google Scholar 

  18. Radtke S, Görgens A, Kordelas L, Schmidt M, Kimmig KR, Köninger A, Horn PA, Giebel B (2015) CD133 allows elaborated discrimination and quantification of hematopoietic progenitor subsets in human hematopoietic stem cell transplants. Br J Haematol 169:868–878

    Article  CAS  Google Scholar 

  19. Gomez-Ospina N, Scharenberg SG, Mostrel N, Bak RO, Mantri S, Quadros RM, Gurumurthy CB, Lee C, Bao G, Suarez CJ, Khan S, Sawamoto K, Tomatsu S, Raj N, Attardi LD, Aurelian L, Porteus MH (2019) Human genome-edited hematopoietic stem cells phenotypically correct Mucopolysaccharidosis type I. Nat Commun 10(1):4045

    Article  Google Scholar 

  20. Heckl D, Kowalczyk MS, Yudovich D, Belizaire R, Puram RV, McConkey ME, Thielke A, Aster JC, Regev A, Ebert BL (2014) Generation of mouse models of myeloid malignancy with combinatorial genetic lesions using CRISPR-Cas9 genome editing.Nat Biotechnol. 10(1):4045

    Google Scholar 

  21. Richter MF, Zhao KT, Eton E, Lapinaite A, Newby GA, Thuronyi BW, Wilson C, Koblan LW, Zeng J, Bauer DE, Doudna JA, Liu DR (2020) Phage-assisted evolution of an adenine base editor with improved Cas domain compatibility and activity. Nat Biotechnol 38(7):883–891

    Article  CAS  Google Scholar 

  22. Wagenblast E, Azkanaz M, Smith SA, Shakib L, McLeod JL, Krivdova G, Araújo J, Shultz LD, Gan OI, Dick JE, Lechman ER (2019) Functional profiling of single CRISPR/Cas9-edited human long-term hematopoietic stem cells. Nat Commun 10(1):4730

    Article  Google Scholar 

  23. Hess NJ, Lindner PN, Vazquez J, Grindel S, Hudson AW, Stanic AK, Ikeda A, Hematti P, Gumperz JE (2020) Different human immune lineage compositions are generated in non-conditioned NBSGW mice depending on HSPC source. Front Immunol 11:573406

    Article  CAS  Google Scholar 

  24. Fiorini C, Abdulhay NJ, McFarland SK, Munschauer M, Ulirsch JC, Chiarle R, Sankaran VG (2017) Developmentally-faithful and effective human erythropoiesis in immunodeficient and Kit mutant mice. Am J Hematol 92(9):E513–E519

    Article  CAS  Google Scholar 

  25. Amend SR, Valkenburg KC, Pienta KJ (2016) Murine hind limb long bone dissection and bone marrow isolation. J Vis Exp (110):53936

    Google Scholar 

  26. Futrega K, Lott WB, Doran MR (2016) Direct bone marrow HSC transplantation enhances local engraftment at the expense of systemic engraftment in NSG mice. Sci Rep 6:23886

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kumarasamypet M. Mohankumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Devaraju, N., Rajendiran, V., Ravi, N.S., Mohankumar, K.M. (2022). Genome Engineering of Hematopoietic Stem Cells Using CRISPR/Cas9 System. In: Kannan, N., Beer, P. (eds) Stem Cell Assays. Methods in Molecular Biology, vol 2429. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1979-7_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1979-7_20

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1978-0

  • Online ISBN: 978-1-0716-1979-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics