Skip to main content

Use of Optical In Vivo Imaging to Monitor and Optimize Delivery of Novel Plasmid-Launched Live-Attenuated Vaccines

  • Protocol
  • First Online:
Vaccine Design

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2412))

Abstract

Plasmid-launched live-attenuated vaccines (PLLAV) are a modality of next-generation vaccines with the promise to combine the benefits of both (1) the potency of live vaccines and (2) the ease of production, quality control, and thermal stability of classical DNA vaccines. Using the live yellow fever 17D (YF17D) vaccine as paradigm, we establish a bioluminescence-based in vivo imaging approach that allows to rapidly monitor and optimize the dose and route of delivery of such PLLAV in a mouse model of YF17D immunization. Vaccine virus replication thus launched in the skin of vaccinated mice can be quantified by the light emitted, benchmarked to signals originating from a YF17D reporter virus and finally correlated to the induction of humoral immune responses to the yellow fever virus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pulendran B et al (2013) Immunity to viruses: learning from successful human vaccines. Immunol Rev 255(1):243–255

    Article  Google Scholar 

  2. Draper SJ, Heeney JL (2010) Viruses as vaccine vectors for infectious diseases and cancer. Nat Rev Microbiol 8(1):62–73

    Article  CAS  Google Scholar 

  3. Pushko P et al (2016) DNA-launched live-attenuated vaccines for biodefense applications. Expert Rev Vaccines 15(9):1223–1234

    Article  CAS  Google Scholar 

  4. Aubrit F et al (2015) Cell substrates for the production of viral vaccines. Vaccine 33(44):5905–5912

    Article  CAS  Google Scholar 

  5. Rodrigues AF et al (2015) Viral vaccines and their manufacturing cell substrates: new trends and designs in modern vaccinology. Biotechnol J 10(9):1329–1344

    Article  CAS  Google Scholar 

  6. Tretyakova I et al (2019) Novel DNA-launched Venezuelan equine encephalitis virus vaccine with rearranged genome. Vaccine 37(25):3317–3325

    Article  CAS  Google Scholar 

  7. Jiang X et al (2015) Molecular and immunological characterization of a DNA-launched yellow fever virus 17D infectious clone. J Gen Virol 96(Pt 4):804–814

    Article  CAS  Google Scholar 

  8. Kum DB et al (2019) Limited evolution of the yellow fever virus 17d in a mouse infection model. Emerg Microbes Infect 8(1):1734–1746

    Article  Google Scholar 

  9. Kupper TS, Fuhlbrigge RC (2004) Immune surveillance in the skin: mechanisms and clinical consequences. Nat Rev Immunol 4(3):211–222

    Article  CAS  Google Scholar 

  10. Nagao K et al (2009) Murine epidermal Langerhans cells and langerin-expressing dermal dendritic cells are unrelated and exhibit distinct functions. Proc Natl Acad Sci U S A 106(9):3312–3317

    Article  CAS  Google Scholar 

  11. Roukens AH et al (2008) Intradermally administered yellow fever vaccine at reduced dose induces a protective immune response: a randomized controlled non-inferiority trial. PLoS One 3(4):e1993

    Article  Google Scholar 

  12. Young F, Marra F (2011) A systematic review of intradermal influenza vaccines. Vaccine 29(48):8788–8801

    Article  CAS  Google Scholar 

  13. Rosa DS et al (2015) Multiple approaches for increasing the immunogenicity of an epitope-based anti-HIV vaccine. AIDS Res Hum Retrovir 31(11):1077–1088

    Article  CAS  Google Scholar 

  14. Zhang L et al (2008) T cell epitope-based peptide-DNA dual vaccine induces protective immunity against Schistosoma japonicum infection in C57BL/6J mice. Microbes Infect 10(3):251–259

    Article  CAS  Google Scholar 

  15. Yang ZY et al (2004) A DNA vaccine induces SARS coronavirus neutralization and protective immunity in mice. Nature 428(6982):561–564

    Article  CAS  Google Scholar 

  16. Lee LYY, Izzard L, Hurt AC (2018) A review of DNA vaccines against influenza. Front Immunol 9:1568

    Article  CAS  Google Scholar 

  17. Li L, Petrovsky N (2016) Molecular mechanisms for enhanced DNA vaccine immunogenicity. Expert Rev Vaccines 15(3):313–329

    Article  CAS  Google Scholar 

  18. Zhu Y et al (2003) Protective immunity induced with 23 kDa membrane protein dna vaccine of Schistosoma japonicum Chinese strain in infected C57BL/6 mice. Southeast Asian J Trop Med Public Health 34(4):697–701

    CAS  PubMed  Google Scholar 

  19. Avci P et al (2018) In-vivo monitoring of infectious diseases in living animals using bioluminescence imaging. Virulence 9(1):28–63

    Article  Google Scholar 

  20. Sharma S et al (2020) Small-molecule inhibitors of TBK1 serve as an adjuvant for a plasmid-launched live-attenuated yellow fever vaccine. Hum Vaccin Immunother 16(9):2196–2203

    Article  CAS  Google Scholar 

  21. Mishra N et al (2020) A Chimeric Japanese encephalitis vaccine protects against lethal yellow fever virus infection without inducing neutralizing antibodies. mBio 11(2):e02494-19

    Article  Google Scholar 

  22. Kum DB et al (2020) A chimeric yellow fever-Zika virus vaccine candidate fully protects against yellow fever virus infection in mice. Emerg Microbes Infect 9(1):520–533

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge funding by the Flemish Research Foundation (FWO) Excellence of Science (EOS) program (No. 30981113; VirEOS project), the European Union’s Horizon 2020 research and innovation program (No 733176; RABYD-VAX consortium), the Bill and Melinda Gates Foundation (OPP1195179), and KU Leuven Internal Funds (C3/19/059; Lab of Excellence and IDN/20/011; MIRACLE).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Dallmeier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Sharma, S., Dallmeier, K. (2022). Use of Optical In Vivo Imaging to Monitor and Optimize Delivery of Novel Plasmid-Launched Live-Attenuated Vaccines. In: Thomas, S. (eds) Vaccine Design. Methods in Molecular Biology, vol 2412. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1892-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1892-9_14

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1891-2

  • Online ISBN: 978-1-0716-1892-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics