Skip to main content

Computational Design of Peptides with Improved Recognition of the Focal Adhesion Kinase FAT Domain

  • Protocol
  • First Online:
Computational Peptide Science

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2405))

  • 1484 Accesses

Abstract

We describe a two-stage computational protein design (CPD) methodology for the design of peptides binding to the FAT domain of the protein focal adhesion kinase. The first stage involves high-throughput CPD calculations with the Proteus software. The energies of the folded state are described by a physics-based energy function and of the unfolded peptides by a knowledge-based model that reproduces aminoacid compositions consistent with a helicity scale. The obtained sequences are filtered in terms of the affinity and the stability of the complex. In the second stage, design sequences are further evaluated by all-atom molecular dynamics simulations and binding free energy calculations with a molecular mechanics/implicit solvent free energy function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schaller MD (2010) Cellular functions of FAK kinases: insight into molecular mechanisms and novel functions. J Cell Sci 123(7):1007–1013

    Article  CAS  PubMed  Google Scholar 

  2. Walkiewicz KW, Girault J, Arold ST (2015) How to awaken your nanomachines: site-specific activation of focal adhesion kinases through ligand interactions. Prog Biophys. Mol. Bio 119(1):60–71

    Article  CAS  Google Scholar 

  3. Naser R, Aldehaiman A, Díaz-Galicia E, Arold ST (2018) Endogenous control mechanisms of FAK and PYK2 and their relevance to cancer development. Cancers 10(6):196

    Article  PubMed Central  Google Scholar 

  4. Sulzmaier FJ, Jean C, Schlaepfer DD (2014) FAK in cancer: mechanistic findings and clinical applications. Nat Rev Cancer 14(9):598–610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Shen T, Guo Q (2018) Role of Pyk2 in human cancers. Med Sci Monitor 24:8172–8182

    Article  CAS  Google Scholar 

  6. Liu S, Chen L, Xu Y (2018) Significance of PYK2 level as a prognosis predictor in patients with colon adenocarcinoma after surgical resection. Oncotargets Ther 11:7625–7634

    Article  CAS  Google Scholar 

  7. Quiroga MN, Díaz MR, Moreno J, Aguilar RG, Ibarra ML, Sánchez PP, Cabrero IA, Gómez GV, Zavaleta LR, Aranda DA, Gómez FS (2019) Increased expression of FAK isoforms as potential cancer biomarkers in ovarian cancer. Oncol Lett 17:4779–4786

    Google Scholar 

  8. Pan M-R, Wu C-C, Kan J-Y, Li Q-L, Chang S-J, Wu C-C, Li C-L, Ou-Yang F, Hou M-F, Yip H-K, Luo C-W (2019) Impact of FAK expression on the cytotoxic effects of CIK therapy in triple-negative breast cancer. Cancers 12(1):94

    Article  PubMed Central  Google Scholar 

  9. Golubovskaya VM, Ho B, Zheng M, Magis A, Ostrov D, Morrison C, Cance WG (2013) Disruption of focal adhesion kinase and p53 interaction with small molecule compound r2 reactivated p53 and blocked tumor growth. BMC Cancer 13(1):342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Golubovskaya VM, Palma NL, Zheng M, Ho B, Magis A, Ostrov D, Cance WG (2013) A small-molecule inhibitor, 5′-o-tritylthymidine, targets FAK and Mdm-2 interaction, and blocks breast and colon tumorigenesis in vivo. Anti-Cancer Agent Me 13(4):532–545

    Article  CAS  Google Scholar 

  11. Ucar DA, Magis AT, He D, Lawrence NJ, Sebti SM, Kurenova E, Zajac-Kaye M, Zhang J, Hochwald SN (2013) Inhibiting the interaction of cMET and IGF-1r with FAK effectively reduces growth of pancreatic cancer cells in vitro and in vivo. Anti-Cancer Agent Me 13(4):595–602

    Article  CAS  Google Scholar 

  12. Ucar DA, Kurenova E, Garrett TJ, Cance WG, Nyberg C, Cox A, Massoll N, Ostrov DA, Lawrence N, Sebti SM, Zajac-Kaye M, Hochwald SN (2014) Disruption of the protein interaction between FAK and IGF-1R inhibits melanoma tumor growth. Cell Cycle 11(17):3250–3259

    Article  Google Scholar 

  13. Lv P-C, Jiang A-Q, Zhang W-M, Zhu H-L (2018) FAK inhibitors in cancer, a patent review. Expert Opinion Therapeutic Patents 28(2):139–145. PMID: 29210300

    Article  CAS  Google Scholar 

  14. Alvarado C, Stahl E, Koessel K, Rivera A, Cherry BR, Pulavarti SVSRK, Szyperski T, Cance W, Marlowe T (2019) Development of a fragment-based screening assay for the focal adhesion targeting domain using SPR and NMR. Molecules 24(18):3352

    Article  CAS  PubMed Central  Google Scholar 

  15. Mabonga L, Kappo AP (2020) Peptidomimetics: a synthetic tool for inhibiting protein–protein interactions in cancer. Int J Peptide Res Therapeutics 26(1):225–241

    Article  CAS  Google Scholar 

  16. Michael E, Polydorides S, Simonson T, Archontis G (2017) Simple models for nonpolar solvation: parameterization and testing. J Comp Chem 38(29):2509–2519

    Article  CAS  Google Scholar 

  17. Michael E, Polydorides S, Promponas V, Skourides P, Archontis G (2021) Recognition of LD motifs by the focal adhesion targeting domains of focal adhesion kinase and proline-rich tyrosine kinase 2beta: insights from molecular dynamics simulations. Proteins 89(29):29–52

    Article  CAS  Google Scholar 

  18. Munoz V, Serrano L (1995) Elucidating the folding problem of helical peptides using empirical parameters. ii. helix macrodipole effects and rational modification of the helical content of natural peptides. J Mol Biol 245(3):275–296

    Article  CAS  PubMed  Google Scholar 

  19. Mignon D, Druart K, Michael E, Opuu V, Polydorides S, Villa F, Gaillard T, Panel N, Archontis G, Simonson T (2020) Physics-based computational protein design: an update. J Phys Chem A 2020:10637–10648

    Google Scholar 

  20. Simonson T, Gaillard T, Mignon D, am Busch MS, Lopes A, Amara N, Polydorides S, Sedano A, Druart K, Archontis G (2013) Computational protein design: the proteus software and selected applications. J Comput Chem 34(28):2472–2484

    Google Scholar 

  21. Phillips JC, Hardy DJ, Maia JDC, Stone JE, Ribeiro JV, Bernardi RC, Buch R, Fiorin G, Henin J, Jiang W, McGreevy R, Melo MCR, Radak BK, Skeel RD, Singharoy A, Wang Y, Roux B, Aksimentiev A, Luthey-Schulten Z, Kale LV, Schulten K, Chipot C, Tajkhorshid E (2020) Scalable molecular dynamics on CPU and GPU architectures with NAMD. J Chem Phys 153:044130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hayashi I, Vuori K, Liddington RC (2002) The focal adhesion targeting (FAT) region of focal adhesion kinase is a four-helix bundle that binds paxillin. Nat Struct Mol Biol 9(2):101–106

    Article  CAS  Google Scholar 

  23. Arold ST, Hoellerer MK, Noble MEM (2002) The structural basis of localization and signaling by the focal adhesion targeting domain. Structure 10(3):319–327

    Article  CAS  PubMed  Google Scholar 

  24. Lulo J, Yuzawa S, Schlessinger J (2009) Crystal structures of free and ligand-bound focal adhesion targeting domain of Pyk2. Biochem Bioph Res Co 383(3):347–352

    Article  CAS  Google Scholar 

  25. Alam T, Alazmi M, Gao X, Arold ST (2014) How to find a leucine in a haystack? structure, ligand recognition and regulation of leucine–aspartic acid (LD) motifs. Biochem J 460(3):317–329

    Article  CAS  PubMed  Google Scholar 

  26. Liu G, Guibao CD, Zheng J (2002) Structural insight into the mechanisms of targeting and signaling of focal adhesion kinase. Mol Cell Biol 22(8):2751–2760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hoellerer MK, Noble MEM, Labesse G, Campbell ID, Werner JM, Arold ST (2003) Molecular recognition of paxillin LD motifs by the focal adhesion targeting domain. Structure 11(10):1207–1217

    Article  CAS  PubMed  Google Scholar 

  28. Gao G, Prutzman KC, King ML, Scheswohl DM, DeRose EF, London RE, Schaller MD, Campbell SL (2004) NMR solution structure of the focal adhesion targeting domain of focal adhesion kinase in complex with a paxillin LD peptide: evidence for a two-site binding model. J Biolog Chem 279(9):8441–8451

    Article  CAS  Google Scholar 

  29. Bertolucci CM, Guibao CD, Zheng J (2005) Structural features of the focal adhesion kinase-paxillin complex give insight into the dynamics of focal adhesion assembly. Prot Sci 14(3):644–652

    Article  CAS  Google Scholar 

  30. Tuffery P, Etchebest C, Hazout S, Lavery R (1991) A new approach to the rapid determination of protein side chain conformations. J Biomol Struct Dyn 8(6):1267–1289

    Article  CAS  PubMed  Google Scholar 

  31. Simonson T (2013) What is the dielectric constant of a protein when its backbone is fixed? JCTC 9:4603–4608

    CAS  PubMed  Google Scholar 

  32. Cornell W, Cieplak P, Bayly C, Gould I, Merz K, Ferguson D, Spellmeyer D, Fox T, Caldwell J, Kollman P (1995) A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J Am Chem Soc 117:S179–S197

    Article  Google Scholar 

  33. Still WC, Tempczyk A, Hawley RC, Hendrickson T (1990) Semianalytical treatment of solvation for molecular mechanics and dynamics. J Am Chem Soc 112(16):6127–6129

    Article  CAS  Google Scholar 

  34. Hawkins GD, Cramer CJ, Truhlar DG (1995) Pairwise solute descreening of solute charges from a dielectric medium. Chem Phys Lett 246(1–2):122–129

    Article  CAS  Google Scholar 

  35. Schaefer M, Karplus M (1996) A comprehensive analytical treatment of continuum electrostatics. J Phys Chem 100(5):1578–1599

    Article  CAS  Google Scholar 

  36. Weeks JD, Chandler D, Andersen HC (1971) Role of repulsive forces in determining the equilibrium structure of simple liquids. J Chem Phys 54(12):5237–5247

    Article  CAS  Google Scholar 

  37. Aguilar B, Shadrach R, Onufriev AV (2010) Reducing the secondary structure bias in the generalized born model via r6 effective radii. J Chem Theory Comp 6(12):3613–3630

    Article  CAS  Google Scholar 

  38. Lazaridis T, Karplus M (1999) Effective energy function for proteins in solution. Proteins 35(2):133–152

    Article  CAS  PubMed  Google Scholar 

  39. Archontis G, Simonson T (2005) A residue-pairwise generalized born scheme suitable for protein design calculations. J Phys Chem B 109(47):22667–22673

    Article  CAS  PubMed  Google Scholar 

  40. Villa F, Mignon D, Polydorides S, Simonson T (2017) Comparing pairwise-additive and many-body generalized born models for acid/base calculations and protein design. J Comput Chem 38(28):2396–2410

    Article  CAS  PubMed  Google Scholar 

  41. Kuhlman B, Dantas G, Ireton GC, Varani G, Stoddard BL, Baker D (2003) Design of a novel globular protein fold with atomic-level accuracy. Science 302:1364–1368

    Article  CAS  PubMed  Google Scholar 

  42. Ollikainen N, de Jong RM, Kortemme T (2015) Coupling protein side-chain and backbone flexibility improves the re-design of protein-ligand specificity. PLOS Comput Biol 11(9):1–22

    Article  Google Scholar 

  43. Druart K, Bigot J, Audit E, Simonson T (2016) A hybrid Monte Carlo scheme for multibackbone protein design. J Chem Theory Comp 12:6035–6048

    Article  CAS  Google Scholar 

  44. Hayes RL, Armacost, KA, Vilseck JZ, Brooks III CL (2017) Adaptive landscape flattening accelerates sampling of alchemical space in multisite λ dynamics. J Phys Chem. B 121(15):3626–3635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Simonson T (2020) PROTEUS 3.0 Manual. https://proteus.polytechnique.fr

  46. Mignon D, Simonson T (2016) Comparing three stochastic search algorithms for computational protein design: Monte Carlo, replica exchange Monte Carlo, and a multistart, steepest-descent heuristic. J Comput Chem 37(19):1781–1793

    Article  CAS  PubMed  Google Scholar 

  47. Mignon D, Panel N, Chen X, Fuentes EJ, Simonson T (2017) Computational design of the Tiam1 PDZ domain and its ligand binding. J Chem Theory Comput 13(5):2271–2289

    Article  PubMed  Google Scholar 

  48. Genheden S, Ryde U (2015) The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opin Drug Dis 10(5):449–461

    Article  CAS  Google Scholar 

  49. Jo S, Kim T, Iyer VG, Im W (2008) CHARMM-GUI: a web-based graphical user interface for CHARMM. J Comp Chem 29(11):1859–1865

    Article  CAS  Google Scholar 

  50. Polydorides S, Simonson T (2013) Monte Carlo simulations of proteins at constant pH with generalized Born solvent, flexible sidechains, and an effective dielectric boundary. J Comput Chem 34:2742–2756

    Article  CAS  PubMed  Google Scholar 

  51. Seeber M, Cecchini M, Rao F, Setanni G, Caflisch A (2007) Wordom: a program for efficient analysis of molecular dynamics simulations. Bioinf 23:2625–2627

    Article  CAS  Google Scholar 

  52. Grantham R (1974) Amino acid difference formula to help explain protein evolution. Science 185(4154):862–864

    Article  CAS  PubMed  Google Scholar 

  53. Sneath P (1966) Relations between chemical structure and biological activity in peptides. J Theoret Biol 12(2):157–195

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was co-funded by the European Regional Development Fund and the Republic of Cyprus through the Research and Innovation Foundation (Project: INFRASTRUCTURES/1216/0060). EM was supported by a graduate student fellowship from the University of Cyprus.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georgios Archontis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Michael, E., Polydorides, S., Archontis, G. (2022). Computational Design of Peptides with Improved Recognition of the Focal Adhesion Kinase FAT Domain. In: Simonson, T. (eds) Computational Peptide Science. Methods in Molecular Biology, vol 2405. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1855-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1855-4_18

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1854-7

  • Online ISBN: 978-1-0716-1855-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics