Skip to main content

Application of Artificial Intelligence and Machine Learning in Drug Discovery

  • Protocol
  • First Online:
Artificial Intelligence in Drug Design

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2390))

Abstract

Machine Learning (ML) and Deep Learning (DL) are two subclasses of Artificial Intelligence (AI), that, in this day and age of big data provides significant opportunities to pharmaceutical discovery research and development by translating data to information and ultimately to knowledge. Machine Learning or AI is not really new but over last few years, application of better methods have emerged and they have been successfully applied for drug discovery and development. This chapter would provide an overview of these methods and how they have been applied across various work streams, e.g., generative chemistry, ADMET prediction, retrosynthetic analysis, etc. within drug discovery process. This chapter would also attempt to provide caution and pit falls in utilizing these methods blindly while summarizing challenges and limitations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ramesh A (2004) Artificial intelligence in medicine. Ann R Coll Surg Engl 86:334–338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Mamoshina P et al (2018) Machine learning on human muscle transcriptomic data for biomarker discovery and tissue-specific drug target identification. Front Genet 9:242

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Yang Y, Siau KL (2018) A Qualitative Research on Marketing and Sales in the Artificial Intelligence Age. MWAIS 2018 Proceedings. 41

    Google Scholar 

  4. Wirtz BW (2019) Artificial intelligence and the public sector—applications and challenges. Int J Public Adm 42:596–615

    Article  Google Scholar 

  5. Gartner’s 2018 Hype cycle for emerging technologies identifies three key trends that organizations must track to gain competitive advantage. http://www.gartner.com/newsroom/id/3412017. Available 10 April 2017

  6. Smith RG, Farquhar A (2000) The road ahead for knowledge management: an AI perspective. AI Mag 21:17

    Google Scholar 

  7. Lamberti MJ (2019) A study on the application and use of artificial intelligence to support drug development. Clin Ther 41:1414–1426

    Article  PubMed  Google Scholar 

  8. SAS Institute. Machine learning: what it is and why it matters. Accessed 13 Feb 2020

    Google Scholar 

  9. Wilkinson M, Dumontier M, Aalbersberg I et al (2016) The FAIR guiding principles for scientific data management and stewardship. Sci Data 3:160018

    Article  PubMed  PubMed Central  Google Scholar 

  10. Schneider P, Walters WP, Plowright AT et al (2020) Rethinking drug design in the artificial intelligence era. Nat Rev Drug Discov 19:353–364

    Article  CAS  PubMed  Google Scholar 

  11. Raymond JL, Medina JF (2018) Computational principles of supervised learning in the cerebellum. Annu Rev Neurosci 41:233–253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Duda RO, Hart PE, Stork DG (2001) Unsupervised learning and clustering. Pattern classification, 2nd edn. Wiley, New York

    Google Scholar 

  13. Breiman L (2001) Random forests. Mach Learn 45:5–32

    Article  Google Scholar 

  14. Joachims T (1998) Text categorization with support vector machines: learning with many relevant features. In: European conference on machine learning. Springer Verlag, Heidelberg, pp 137–142

    Google Scholar 

  15. Lewis DD (1998) Naive (Bayes) at forty: the independence assumption in information retrieval. In: European conference on machine learning. Springer Verlag, Heidelberg, pp 4–15

    Google Scholar 

  16. Kohonen T (1990) Self-organizing map. Proc IEEE 78:1464–1480

    Article  Google Scholar 

  17. Hartigan JA, Wong MA (1979) Algorithm AS 136: a k-means clustering algorithm. J R Stat Soc C-Appl 28:100–108

    Google Scholar 

  18. Johnson SC (1967) Hierarchical clustering schemes. Psychometrika 32:241–254

    Article  CAS  PubMed  Google Scholar 

  19. Brownlee J. Deep learning with time series forecasting, machine learning mastery. https://machinelearningmastery.com/machine-learning-with-python/. Accessed 1 Mar 2018

  20. https://practicalcheminformatics.blogspot.com/2021/01/ai-in-drug-discovery-2020-highly.html

  21. Yang X, Wang Y, Byrne R, Schneider G, Yang S (2019) Concepts of artificial intelligence for computer-assisted drug discovery. Chem Rev 119:10520–10594

    Article  CAS  PubMed  Google Scholar 

  22. Vamathevan J, Clark D, Czodrowski P et al (2019) Applications of machine learning in drug discovery and development. Nat Rev Drug Discov 18:463–477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Patel L, Shukla T, Huang X, Ussery DW, Wang S (2020) Machine learning methods in drug discovery. Molecules 25:5277

    Article  CAS  PubMed Central  Google Scholar 

  24. Bajorath J et al (2020) Artificial intelligence in drug discovery: into the great wide open. J Med Chem 63:8651–8652. Special issue of JCIM

    Article  CAS  PubMed  Google Scholar 

  25. Vo A, Van Vleet T, Gupta R, Liguori M, Rao M (2020) An overview of machine learning and big data for drug toxicity evaluation. Chem Res Toxicol 33:20–37

    Article  CAS  PubMed  Google Scholar 

  26. Gómez-Bombarelli R, Wei JN, Duvenaud D, Hernández-Lobato JM, Sánchez-Lengeling B, Sheberla D, Aguilera-Iparraguirre J, Hirzel TD, Adams RP, Aspuru-Guzik A (2018) Automatic chemical design using a data-driven continuous representation of molecules. ACS Central Sci 4:268–276

    Article  CAS  Google Scholar 

  27. Schneider G, Fechner U (2005) Computer-based de novo design of drug-like molecules. Nat Rev Drug Discov 4:649–663

    Article  CAS  PubMed  Google Scholar 

  28. Plowright AT, Johnstone C, Kihlberg J, Pettersson J, Robb G, Thompson RA (2012) Hypothesis driven drug design: improving quality and effectiveness of the design-make-test-analyse cycle. Drug Discov Today 17(1–2):56–62

    Article  CAS  PubMed  Google Scholar 

  29. Mansbach RA, Leus IV, Mehla J, Lopez CA, Walker JK, Rybenkov VV, Hengartner NW, Zgurskaya HI, Gnanakaran S (2019) Development of a fragment-based machine learning algorithm for designing hybrid drugs optimized for permeating Gram-negative bacteria. arXiv:1907.13459 [q-bio.QM]

    Google Scholar 

  30. Reymond JL, Van Deursen R, Blum LC, Ruddigkeit L (2010) Chemical space as a source for new drugs. MedChemComm 1:30–38

    Article  CAS  Google Scholar 

  31. Prykhodko O, Johansson SV, Kotsias PC et al (2019) A de novo molecular generation method using latent vector based generative adversarial network. J Cheminform 11:74

    Article  PubMed  PubMed Central  Google Scholar 

  32. Méndez-Lucio O, Baillif B, Clevert DA et al (2020) De novo generation of hit-like molecules from gene expression signatures using artificial intelligence. Nat Commun 11:10

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Wan F, Zeng J (2016) Deep learning with feature embedding for compound–protein interaction prediction. bioRxiv

    Google Scholar 

  34. Le Guilloux V, Schmidtke P, Tuffery P (2009) Fpocket: an open source platform for ligand pocket detection. BMC Bioinformatics 10:168

    Article  PubMed  PubMed Central  Google Scholar 

  35. Martin EJ, Polyakov VR, Zhu X-W, Tian L, Mukherjee P, Liu X (2019) All-assay-Max2 pQSAR: activity predictions as accurate as four-concentration IC50s for 8558 novartis assays. J Chem Informat Model 59(10):4450–4459

    Article  CAS  Google Scholar 

  36. Wallach I, Dzamba M, Heifets A (2015) AtomNet: a deep convolutional neural network for bioactivity prediction in structure-based drug discovery. ArXiv e-prints

    Google Scholar 

  37. Molinski SV, Shahani VM, MacKinnon SS, Morayniss LD, Laforet M, Woollard G, Kurji N, Sanchez CG, Wodak SJ, Windemuth A (2017) Computational proteome-wide screening predicts neurotoxic drug-protein interactome for the investigational analgesic BIA 10-2474. Biochem Biophys Res Commun. Jan 29;483(1):502–508

    Google Scholar 

  38. Callaway E (2020) It will change everything: DeepMind’s AI makes gigantic leap in solving protein structures. Nature 588:203–204

    Article  CAS  PubMed  Google Scholar 

  39. Shah P, Kendall F, Khozin S et al (2019) Artificial intelligence and machine learning in clinical development: a translational perspective. NPJ Digit Med 2:69

    Article  PubMed  PubMed Central  Google Scholar 

  40. Gupta RR, Gifford EM, Liston T, Waller CL, Hohman M, Bunin BA, Ekins S (2010) Using open source computational tools for predicting human metabolic stability and additional absorption, distribution, metabolism, excretion, and toxicity properties. Drug Metab Dispos 38(11):2083–2090

    Article  CAS  PubMed  Google Scholar 

  41. Morgan P, Van Der Graaf PH, Arrowsmith J, Feltner DE, Drummond KS, Wegner CD, Street SD (2012) Can the flow of medicines be improved? Fundamental pharmacokinetic and pharmacological principles toward improving phase II survival. Drug Discov Today 17:419–424

    Article  CAS  PubMed  Google Scholar 

  42. Wang Y, Xing J, Xu Y, Zhou N, Peng J, Xiong Z, Liu X, Luo X, Luo C, Chen K (2015) In silico ADME/T modelling for rational drug design. Q Rev Biophys 48:488–515

    Article  PubMed  Google Scholar 

  43. Lombardo F, Desai PV, Arimoto R, Desino KE, Fischer H, Keefer CE, Petersson C, Winiwarter S, Broccatelli F (2017) In silico absorption, distribution, metabolism, excretion, and pharmacokinetics (ADME-PK): utility and best practices. An industry perspective from the international consortium for innovation through quality in pharmaceutical development. J Med Chem 60:9097–9113

    Article  CAS  PubMed  Google Scholar 

  44. Keefer CE, Kauffman GW, Gupta RR (2013) Interpretable, probability-based confidence metric for continuous quantitative structure-activity relationship models. J Chem Inf Model 53:368–383

    Article  CAS  PubMed  Google Scholar 

  45. Segall M (2014) Advances in multiparameter optimization methods for de novo drug design. Expert Opin Drug Discovery 9:803–817

    Article  Google Scholar 

  46. Debe DA, Mamidipaka RB, Gregg RJ, Metz JT, Gupta RR, Muchmore SW (2013) ALOHA: a novel probability fusion approach for scoring multi-parameter drug-likeness during the lead optimization stage of drug discovery. J Comput Aided Mol Des 27(9):771–782

    Article  CAS  PubMed  Google Scholar 

  47. Gupta RR et al. (2015) AIDEAS: An Integrated Cheminformatics Solution. BioIt World Abstract and Presentation, p 25. https://www.bioitworldexpo.com/uploadedFiles/Bio-IT_World_Expo/Agenda/15/BIT-2015-Agenda.pdf

  48. Molga K, Szymkuć S, Grzybowski BA (2021) Chemist ex machina: advanced synthesis planning by computers. Acc Chem Res. 54(5):1094–1106

    Google Scholar 

  49. Segler M, Preuss M, Waller M (2018) Planning chemical syntheses with deep neural networks and symbolic AI. Nature 555:604–610

    Article  CAS  PubMed  Google Scholar 

  50. Ahneman DT, Estrada JG, Lin S, Dreher SD, Doyle AG (2018) Predicting reaction performance in C–N cross-coupling using machine learning. Science 360:186–190

    Article  CAS  PubMed  Google Scholar 

  51. Coley CW, Barzilay R, Jaakkola TS, Green WH, Jensen KF (2017) Prediction of organic reaction outcomes using machine learning. ACS Cent Sci 3:434–443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Lowe D. Chemical reactions from US patents (1976-Sep2016). https://figshare.com/articles/Chemical_reactions_from_US_%20patents_1976-Sep2016_/5104873. Accessed 1 Jan 2021

  53. Szymkuć S, Gajewska EP, Klucznik T, Molga K, Dittwald P, Startek M, Bajczyk M, Grzybowski BA (2016) Computer-assisted synthetic planning: the end of the beginning. Angew Chem Int Ed 55:5904–5937

    Article  CAS  Google Scholar 

  54. https://ccas.nd.edu/about/

  55. Mo Y, Guan Y, Verma P, Guo J, Fortunato ME, Lu Z, Coley CW, Jensen K (2021) Evaluating and clustering retrosynthesis pathways with learned strategy. Chem Sci., 12, 1469–1478

    Google Scholar 

  56. https://insilico.com/blog/pcc. Blog post related to insilico medicine’s use of AI to discover novel molecule for IPF

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Gupta, R.R. (2022). Application of Artificial Intelligence and Machine Learning in Drug Discovery. In: Heifetz, A. (eds) Artificial Intelligence in Drug Design. Methods in Molecular Biology, vol 2390. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1787-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1787-8_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1786-1

  • Online ISBN: 978-1-0716-1787-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics