Skip to main content

Determination of the Stability and Intracellular (Intra-Nuclear) Targeting and Recruitment of Pre-HAC1 mRNA in the Saccharomyces cerevisiae During the Activation of UPR

  • Protocol
  • First Online:
The Unfolded Protein Response

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2378))

Abstract

Nuclear degradation of pre-HAC1 mRNA and its subsequent targeting plays a vital role in the activation as well as attenuation of Unfolded Protein Response (UPR) in Saccharomyces cerevisiae. Accurate measurement of the degradation of precursor HAC1 mRNA therefore appears vital to determine the phase of activation or attenuation of this important intracellular signaling pathway. Typically, pre-HAC1 mRNA degradation is measured by the transcription shut-off experiment in which RNA Polymerase II transcription is inhibited by a potent transcription inhibitor to prevent the de novo synthesis of all Polymerase II transcripts followed by the measurement of the steady-state levels of a specific (e.g., pre-HAC1) mRNA at different times after the inhibition of the transcription. The rate of the decay is subsequently determined from the slope of the decay curve and is expressed as half-life (T1/2). Estimation of the half-life values and comparison of this parameter determined under different physiological cues (such as in absence or presence of redox/ER/heat stress) gives a good estimate of the stability of the mRNA under these conditions and helps gaining an insight into the mechanism of the biological process such as activation or attenuation of UPR.

Intra-nuclear targeting of the pre-HAC1 mRNA from the site of its transcription to the site of non-canonical splicing, where the kinase-endonuclease Ire1p clusters into the oligomeric structures constitutes an important aspect of the activation of Unfolded Protein Response pathway. These oligomeric structures are detectable as the Ire1p foci/spot in distinct locations across the nuclear-ER membrane under confocal micrograph using immunofluorescence procedure. Extent of the targeting of the pre-HAC1 mRNA is measurable in a quantified manner by co-expressing fluorescent-labeled pre-HAC1 mRNA and Ire1p protein followed by estimating their co-localization using FACS (Fluorescence-Activated Cell Sorter) analysis. Here, we describe detailed protocol of both determination of intra-nuclear decay rate and targeting-frequency of pre-HAC1 mRNA that were optimized in our laboratory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Struhl K (2007) Transcriptional noise and the fidelity of initiation by RNA polymerase II. Nat Struct Mol Biol 14:103–105

    Article  CAS  PubMed  Google Scholar 

  2. Bousquet-Antonelli C, Presutti C, Tollervey D (2000) Identification of a regulated pathway for nuclear pre-mRNA turnover. Cell 102:765–775

    Article  CAS  PubMed  Google Scholar 

  3. Libri D, Dower K, Boulay J et al (2002) Interactions between mRNA export commitment, 3′-end quality control, and nuclear degradation. Mol Cell Biol 22:8254–8266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Milligan L, Decourty L, Saveanu C et al (2008) A yeast exosome cofactor, Mpp6, functions in RNA surveillance and in the degradation of noncoding RNA transcripts. Mol Cell Biol 28:5446–5457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Rougemaille M, Gudipati RK, Olesen JR et al (2007) Dissecting mechanisms of nuclear mRNA surveillance in THO/sub2 complex mutants. EMBO J 26:2317–2326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kuai L, Das B, Sherman F (2005) A nuclear degradation pathway controls the abundance of normal mRNAs in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 102:13962–13967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Vasiljeva L, Buratowski S (2006) Nrd1 interacts with the nuclear exosome for 3′ processing of RNA polymerase II transcripts. Mol Cell 21:239–248

    Article  CAS  PubMed  Google Scholar 

  8. Sarkar D, Paira S, Das B (2018) Nuclear mRNA degradation tunes the gain of the unfolded protein response in Saccharo myces cerevisiae. Nucleic Acids Res 46:1139–1156

    Article  CAS  PubMed  Google Scholar 

  9. Das S, Biswas S, Chaudhuri S et al (2019) A nuclear zip code in SKS1 mRNA promotes its slow export, nuclear retention, and degradation by the nuclear exosome/DRN in Saccharomyces cerevisiae. J Mol Biol 431:3626–3646

    Article  CAS  PubMed  Google Scholar 

  10. Wickner W, Schekman R (2005) Protein translocation across biological membranes. Science 310:1452–1456

    Article  CAS  PubMed  Google Scholar 

  11. Ellgaard L, Helenius A (2003) Quality control in the endoplasmic reticulum. Nat Rev Mol Cell Biol 4:181–191

    Article  CAS  PubMed  Google Scholar 

  12. Bernales S, Papa FR, Walter P (2006) Intracellular signaling by the unfolded protein response. Annu Rev Cell Dev Biol 22:487–508

    Article  CAS  PubMed  Google Scholar 

  13. Ron D, Walter P (2007) Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol 8:519–529

    Article  CAS  PubMed  Google Scholar 

  14. Walter P, Ron D (2011) The unfolded protein response: from stress pathway to homeostatic regulation. Science (80-. ) 334:1081–1086

    Article  CAS  Google Scholar 

  15. Schröder M, Kaufman RJ (2005) The mammalian unfolded protein response. Annu Rev Biochem 74:739–789

    Article  PubMed  Google Scholar 

  16. Cox JS, Walter P (1996) A novel mechanism for regulating activity of a transcription factor that controls the unfolded protein response. Cell 87:391–404

    Article  CAS  PubMed  Google Scholar 

  17. Kawahara T, Yanagi H, Yura T, Mori K (1997) Endoplasmic reticulum stress-induced mRNA splicing permits synthesis of transcription factor Hac1p/Ern4p that activates the unfolded protein response. Mol Biol Cell 8:1845–1862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Shamu CE, Walter P (1996) Oligomerization and phosphorylation of the Ire1p kinase during intracellular signaling from the endoplasmic reticulum to the nucleus. EMBO J 15:3028–3039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sidrauski C, Walter P (1997) The transmembrane kinase Ire1p is a site-specific endonuclease that initiates mRNA splicing in the unfolded protein response. Cell 90:1031–1039

    Article  CAS  PubMed  Google Scholar 

  20. Welihinda AA, Kaufmant RJ (1996) The unfolded protein response pathway in Saccharomyces cerevisiae. Oligomerization and trans-phosphorylation of Ire1p (Ern1p) are required for kinase activation. J Biol Chem 271:18181–18187

    Article  CAS  PubMed  Google Scholar 

  21. Mori K, Kawahara T, Yoshida H et al (1996) Signalling from endoplasmic reticulum to nucleus: transcription factor with a basic-leucine zipper motif is required for the unfolded protein-response pathway. Genes Cells 1:803–817

    Article  CAS  PubMed  Google Scholar 

  22. Rüegsegger U, Leber JH, Walter P (2001) Block of HAC1 mRNA translation by long-range base pairing is released by cytoplasmic splicing upon induction of the unfolded protein response. Cell 107:103–114

    Article  PubMed  Google Scholar 

  23. Korennykh AV, Egea PF, Korostelev AA et al (2009) The unfolded protein response signals through high-order assembly of Ire1. Nature 457:687–693

    Article  CAS  PubMed  Google Scholar 

  24. Aragon T, van Anken E, Pincus D et al (2009) Messenger RNA targeting to endoplasmic reticulum stress signalling sites. Nature 457:736–740

    Article  CAS  PubMed  Google Scholar 

  25. van Anken E, Pincus D, Coyle S et al (2014) Specificity in endoplasmic reticulum-stress signaling in yeast entails a step-wise engagement of HAC1 mRNA to clusters of the stress sensor Ire1. elife 3:e05031

    Article  PubMed  PubMed Central  Google Scholar 

  26. Xia X (2019) Translation control of HAC1 by regulation of splicing in Saccharomyces cerevisiae. Int J Mol Sci 20:1–18

    Google Scholar 

  27. Herrick D, Parker R, Jacobson A (1990) Identification and comparison of stable and unstable mRNAs in Saccharomyces cerevisiae. Mol Cell Biol 10:2269–2284

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Back SH, Schröder M, Lee K et al (2005) ER stress signaling by regulated splicing: IRE1/HAC1/XBP1. Methods 35:395–416

    Article  CAS  PubMed  Google Scholar 

  29. Parker R, Herrick D, Peltz SW, Jacobson A (1991) Measurement of mRNA decay rates in Saccharomyces cerevisiae. Methods Enzym 194:415–423

    Article  CAS  Google Scholar 

  30. Anshu A, Mannan MA, Chakraborty A et al (2015) A novel role for protein kinase Kin2 in regulating HAC1 mRNA translocation, splicing, and translation. Mol Cell Biol 35:199–210

    Article  PubMed  Google Scholar 

  31. Mannan MAU, Shadrick WR, Biener G et al (2013) An Ire1-Phk1 chimera reveals a dispensable role of autokinase activity in endoplasmic reticulum stress response. J Mol Biol 425:2083–2099

    Article  CAS  PubMed  Google Scholar 

  32. Das S, Saha U, Das B (2014) Cbc2p, Upf3p and eIF4G are components of the DRN (degradation of mRNA in the nucleus) in Saccharomyces cerevisiae. FEMS Yeast Res 14:922–932

    Article  CAS  PubMed  Google Scholar 

  33. Szöllősi J, Damjanovich S, Nagy P et al (2006) Principles of resonance energy transfer. Curr Protoc Cytom 38:1.12.1–1.12.16

    Google Scholar 

  34. Nagy P, Vereb G, Damjanovich S et al (2006) Measuring FRET in flow cytometry and microscopy. Curr Protoc Cytom 38:12.8.1–12.8.13

    Google Scholar 

Download references

Acknowledgment

We thank Profs. Kazutoshi Mori, (Kyoto University, Japan), Peter Walter (University of California San Francisco, USA), Martin Schroeder (University of Durham, UK), Drs. Madhusudan Dey and Anish Anshu (University of Wisconsin, Milwaukee, USA), Prof. J. Scott Butler (University of Rochester, Rochester, USA) for various yeast strains and plasmids. We are grateful to all the anonymous reviewers for their critical comments and constructive criticisms. Research in the laboratory of the authors is supported by the research grants from CSIR (Ref. No 38/1280/11/EMR-II and 38/1427/16/EMR-II), DST (File No. SR/SO/BB/0066/2012), DBT (BT/PR6078/BRB/10/ 1114/2012 and BT/PR27917/BRB/ 10/1673/2018) to B.D. SP is partially supported by the DST-PURSE program from Jadavpur University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Biswadip Das .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Paira, S., Das, B. (2022). Determination of the Stability and Intracellular (Intra-Nuclear) Targeting and Recruitment of Pre-HAC1 mRNA in the Saccharomyces cerevisiae During the Activation of UPR. In: Pérez-Torrado, R. (eds) The Unfolded Protein Response. Methods in Molecular Biology, vol 2378. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1732-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1732-8_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1731-1

  • Online ISBN: 978-1-0716-1732-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics