Skip to main content

Repressible Promoter System to Study Essential Genes in Mycobacteria

  • Protocol
  • First Online:
Essential Genes and Genomes

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2377))

Abstract

Inducible gene expression systems represent powerful tools for studying essential gene function and for validation of drug targets in bacteria. Even if several regulated promoters have been characterized, only a few of them have been successfully used in Mycobacteria. Here we describe a successful mycobacterial gene regulation system based on the presence of two chromosomally encoded repressors: Pip and TetR, and a tunable promoter (Pptr) that allows a tight regulation of gene expression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schnappinger D, Ehrt S (2014) Regulated expression systems for mycobacteria and their applications. Microbiol Spectr 2(1) MGM2-0018-2013. https://doi.org/10.1128/microbiolspec.MGM2-0018-2013

  2. Boldrin F, Degiacomi G, Serafini A, Kolly GS, Ventura M, Sala C, Provvedi R, Palu G, Cole ST, Manganelli R (2018) Promoter mutagenesis for fine-tuning expression of essential genes in Mycobacterium tuberculosis. Microb Biotechnol 11(1):238–247. https://doi.org/10.1111/1751-7915.12875

    Article  PubMed  CAS  Google Scholar 

  3. Boldrin F, Casonato S, Dainese E, Sala C, Dhar N, Palu G, Riccardi G, Cole ST, Manganelli R (2010) Development of a repressible mycobacterial promoter system based on two transcriptional repressors. Nucleic Acids Res 38:e134

    Article  CAS  Google Scholar 

  4. Kolly GS, Boldrin F, Sala C, Dhar N, Hartkoorn RC, Ventura M, Serafini A, McKinney JD, Manganelli R, Cole ST (2014) Assessing the essentiality of the decaprenyl-phospho-d-arabinofuranose pathway in Mycobacterium tuberculosis using conditional mutants. Mol Microbiol 92(1):194–211. https://doi.org/10.1111/mmi.12546

    Article  PubMed  CAS  Google Scholar 

  5. Boldrin F, Ventura M, Degiacomi G, Ravishankar S, Sala C, Svetlikova Z, Ambady A, Dhar N, Kordulakova J, Zhang M, Serafini A, Vishwas KG, Kolly GS, Kumar N, Palu G, Guerin ME, Mikusova K, Cole ST, Manganelli R (2014) The phosphatidyl-myo-inositol mannosyltransferase PimA is essential for Mycobacterium tuberculosis growth in vitro and in vivo. J Bacteriol 196(19):3441–3451. https://doi.org/10.1128/JB.01346-13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Degiacomi G, Benjak A, Madacki J, Boldrin F, Provvedi R, Palu G, Kordulakova J, Cole ST, Manganelli R (2017) Essentiality of mmpL3 and impact of its silencing on Mycobacterium tuberculosis gene expression. Sci Rep 7:43495. https://doi.org/10.1038/srep43495

    Article  PubMed  PubMed Central  Google Scholar 

  7. Esposito M, Szadocka S, Degiacomi G, Orena BS, Mori G, Piano V, Boldrin F, Zemanova J, Huszar S, Barros D, Ekins S, Lelievre J, Manganelli R, Mattevi A, Pasca MR, Riccardi G, Ballell L, Mikusova K, Chiarelli LR (2017) A phenotypic-based target screening approach delivers new antitubercular CTP synthetase inhibitors. ACS Infect Dis 3(6):428–437. https://doi.org/10.1021/acsinfecdis.7b00006

    Article  PubMed  CAS  Google Scholar 

  8. Serafini A, Boldrin F, Palu G, Manganelli R (2009) Characterization of a Mycobacterium tuberculosis ESX-3 conditional mutant: essentiality and rescue by iron and zinc. J Bacteriol 191(20):6340–6344

    Article  CAS  Google Scholar 

  9. Ventura M, Rieck B, Boldrin F, Degiacomi G, Bellinzoni M, Barilone N, Alzaidi F, Alzari PM, Manganelli R, O'Hare HM (2013) GarA is an essential regulator of metabolism in Mycobacterium tuberculosis. Mol Microbiol 90(2):356–366. https://doi.org/10.1111/mmi.12368

    Article  PubMed  CAS  Google Scholar 

  10. Gola S, Munder T, Casonato S, Manganelli R, Vicente M (2015) The essential role of SepF in mycobacterial division. Mol Microbiol 97(3):560–576. https://doi.org/10.1111/mmi.13050

    Article  PubMed  CAS  Google Scholar 

  11. Cortes M, Singh AK, Reyrat JM, Gaillard JL, Nassif X, Herrmann JL (2011) Conditional gene expression in Mycobacterium abscessus. PLoS One 6(12):e29306. https://doi.org/10.1371/journal.pone.0029306

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Forti F, Crosta A, Ghisotti D (2009) Pristinamycin-inducible gene regulation in mycobacteria. J Biotechnol 140(3–4):270–277

    Article  CAS  Google Scholar 

  13. Parish T, Stoker NG (2000) Use of a flexible cassette method to generate a double unmarked Mycobacterium tuberculosis tlyA plcABC mutant by gene replacement. Microbiology 146:1969–1975

    Article  CAS  Google Scholar 

  14. Cascioferro A, Boldrin F, Serafini A, Provvedi R, Palu G, Manganelli R (2010) Xer site-specific recombination, an efficient tool to introduce unmarked deletions into mycobacteria. Appl Environ Microbiol 76(15):5312–5316. https://doi.org/10.1128/AEM.00382-10

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Bardarov S, Bardarov S Jr, Pavelka MS Jr, Sambandamurthy V, Larsen M, Tufariello J, Chan J, Hatfull G, Jacobs WR Jr (2002) Specialized transduction: an efficient method for generating marked and unmarked targeted gene disruptions in Mycobacterium tuberculosis, M. bovis BCG and M. smegmatis. Microbiology 148(Pt 10):3007–3017

    Article  CAS  Google Scholar 

  16. Boldrin F, Anoosheh S, Serafini A, Cioetto Mazzabo L, Palu G, Provvedi R, Manganelli R (2019) Improving the stability of the TetR/Pip-OFF mycobacterial repressible promoter system. Sci Rep 9(1):5783. https://doi.org/10.1038/s41598-019-42319-2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Degiacomi G, Personne Y, Mondesert G, Ge X, Mandava CS, Hartkoorn RC, Boldrin F, Goel P, Peisker K, Benjak A, Barrio MB, Ventura M, Brown AC, Leblanc V, Bauer A, Sanyal S, Cole ST, Lagrange S, Parish T, Manganelli R (2016) Micrococcin P1 – a bactericidal thiopeptide active against Mycobacterium tuberculosis. Tuberculosis 100:95–101. https://doi.org/10.1016/j.tube.2016.07.011

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Riccardo Manganelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Boldrin, F., Manganelli, R. (2022). Repressible Promoter System to Study Essential Genes in Mycobacteria. In: Zhang, R. (eds) Essential Genes and Genomes. Methods in Molecular Biology, vol 2377. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1720-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1720-5_17

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1719-9

  • Online ISBN: 978-1-0716-1720-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics