Skip to main content

Organ-on-Chips for Studying Tissue Barriers: Standard Techniques and a Novel Method for Including Porous Membranes Within Microfluidic Devices

  • Protocol
  • First Online:
Organ-on-a-Chip

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2373))

Abstract

A relevant number of organ-on-chips is aimed at modeling epithelial/endothelial interfaces between tissue compartments. These barriers help tissue function either by protecting (e.g., endothelial blood–brain barrier) or by orchestrating relevant molecular exchanges (e.g., lung alveolar interface) in human organs. Models of these biological systems are aimed at characterizing the transport of molecules, drugs or drug carriers through these specific barriers. Multilayer microdevices are particularly appealing to this goal and techniques for embedding porous membranes within organ-on-chips are therefore at the basis of the development and use of such systems. Here, we discuss and provide procedures for embedding porous membranes within multilayer organ-on-chips. We present standard techniques involving both custom-made polydimethylsiloxane (PDMS) membranes and commercially available plastic membranes. In addition, we present a novel method for fabricating and bonding PDMS porous membranes by using a cost-effective epoxy resin in place of microfabricated silicon wafers as master molds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arumugasaamy N, Navarro J, Kent Leach J, Kim PCW, Fisher JP (2019) In vitro models for studying transport across epithelial tissue barriers. Ann Biomed Eng 47(1):1–21. https://doi.org/10.1007/s10439-018-02124-w

    Article  PubMed  Google Scholar 

  2. Ugolini G, Cruz-Moreira D, Visone R, Redaelli A, Rasponi M (2016) Microfabricated physiological models for in vitro drug screening applications. Micromachines 7:233

    Article  Google Scholar 

  3. Sakolish CM, Esch MB, Hickman JJ, Shuler ML, Mahler GJ (2016) Modeling barrier tissues in vitro: methods, achievements, and challenges. EBioMedicine 5:30–39. https://doi.org/10.1016/j.ebiom.2016.02.023

    Article  PubMed  PubMed Central  Google Scholar 

  4. Arlk YB et al (2018) Barriers-on-chips: Measurement of barrier function of tissues in organs-on-chips. Biomicrofluidics 12(4):042218. https://doi.org/10.1063/1.5023041

    Article  CAS  Google Scholar 

  5. Huh D, Torisawa YS, Hamilton GA, Kim HJ, Ingber DE (2012) Microengineered physiological biomimicry: organs-on-chips. Lab Chip 12(12):2156–2164. https://doi.org/10.1039/c2lc40089h

    Article  CAS  PubMed  Google Scholar 

  6. Chueh BH et al (2007) Leakage-free bonding of porous membranes into layered microfluidic array systems. Anal Chem 79:3504–3508

    Article  CAS  Google Scholar 

  7. De Jong J, Lammertink RGH, Wessling M (2006) Membranes and microfluidics: a review. Lab Chip 6(9):1125–1139. https://doi.org/10.1039/b603275c

    Article  CAS  PubMed  Google Scholar 

  8. QuirĂłs-Solano WF et al (2018) Microfabricated tuneable and transferable porous PDMS membranes for organs-on-chips. Sci Rep 8(1):13524. https://doi.org/10.1038/s41598-018-31912-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Dongeun H et al (2010) Reconstituting organ level lung functions on a chip. Science 328:1662–1668

    Article  Google Scholar 

  10. Kim HJ, Huh D, Hamilton G, Ingber DE (2012) Human gut-on-a-chip inhabited by microbial flora that experiences intestinal peristalsis-like motions and flow. Lab Chip 12:2165

    Article  CAS  Google Scholar 

  11. Griep LM et al (2013) BBB on CHIP: Microfluidic platform to mechanically and biochemically modulate blood-brain barrier function. Biomed Microdevices 15:145–150

    Article  CAS  Google Scholar 

  12. Wolff A, Antfolk M, Brodin B, Tenje M (2015) In vitro blood-brain barrier models—an overview of established models and new microfluidic approaches. J Pharm Sci 104(9):1–20. https://doi.org/10.1002/jps.24329

    Article  CAS  Google Scholar 

  13. Ugolini GS et al (2018) Design and validation of a microfluidic device for blood-brain barrier monitoring and transport studies. J Micromechan Microeng 28(4):044001. https://doi.org/10.1088/1361-6439/aaa816

    Article  CAS  Google Scholar 

  14. Booth R, Kim H (2012) Characterization of a microfluidic in vitro model of the blood-brain barrier (μBBB). Lab Chip 12:1784–1792

    Article  CAS  Google Scholar 

  15. Ugolini GS, Visone R, Cruz-Moreira D, Mainardi A, Rasponi M (2018) Generation of functional cardiac microtissues in a beating heart-on-a-chip. Methods Cell Biol 146:69–84. https://doi.org/10.1016/bs.mcb.2018.05.005

    Article  CAS  PubMed  Google Scholar 

  16. Huh D et al (2013) Microfabrication of human organs-on-chips. Nat Protoc 8:2135–2157. https://doi.org/10.1038/nprot.2013.137

    Article  CAS  PubMed  Google Scholar 

  17. Ugolini GS et al (2017) Human cardiac fibroblasts adaptive responses to controlled combined mechanical strain and oxygen changes in vitro. elife 6:e22847

    Article  Google Scholar 

  18. Marsano A et al (2016) Beating heart on a chip: a novel microfluidic platform to generate functional 3D cardiac microtissues. Lab Chip 16:599–610

    Article  CAS  Google Scholar 

  19. Aran K, Sasso LA, Kamdar N, Zahn JD (2010) Irreversible, direct bonding of nanoporous polymer membranes to PDMS or glass microdevices. Lab Chip 10:548–552. https://doi.org/10.1039/b924816a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Stefano Ugolini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ballerini, M., Jouybar, M., Mainardi, A., Rasponi, M., Ugolini, G.S. (2022). Organ-on-Chips for Studying Tissue Barriers: Standard Techniques and a Novel Method for Including Porous Membranes Within Microfluidic Devices. In: Rasponi, M. (eds) Organ-on-a-Chip. Methods in Molecular Biology, vol 2373. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1693-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1693-2_2

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1692-5

  • Online ISBN: 978-1-0716-1693-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics