Skip to main content

Helical Stabilization of Peptide Macrocycles by Stapled Architectures

  • Protocol
  • First Online:
Peptide Macrocycles

Abstract

Over the past two decades, significant efforts have invested in the development of strategies for the stabilization of macrocyclic peptides with α-helix structure by stapling their architectures. These strategies can be divided into two categories: side chain to side chain cross-linking and N-terminal helix nucleation. These stable macrocyclic peptides have been applied in PPI inhibitors and self-assembly materials. Compared with unmodified short peptides, stable α-helix macrocyclic polypeptides have better biophysical properties including higher serum stability, cell permeability, and higher target affinity. This chapter will systematically introduce approaches for helical stabilization of peptide macrocycles, such as ring-closing metathesis (RCM), lactamisation, cycloadditions, reversible reactions, thioether formation as well as newly found sulfonium center formation and the common use of helical stabilized macrocyclic peptides.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Wojcik P, Berlicki L (2016) Peptide-based inhibitors of protein-protein interactions. Bioorg Med Chem Lett 26:707–713

    Article  CAS  Google Scholar 

  2. Ali AM, Atmaj J, Van Oosterwijk N et al (2019) Stapled peptides inhibitors: a new window for target drug discovery. Comput Struct Biotechnol J 17:263–281

    Article  CAS  Google Scholar 

  3. Vlieghe P, Lisowski V, Martinez J et al (2010) Synthetic therapeutic peptides: science and market. Drug Discov Today 15:40–56

    Article  CAS  Google Scholar 

  4. Tsomaia N (2015) Peptide therapeutics: targeting the undruggable space. Eur J Med Chem 94:459–470

    Article  CAS  Google Scholar 

  5. Hu K, Geng H, Zhang Q et al (2016) An in-tether chiral center modulates the helicity, cell permeability, and target binding affinity of a peptide. Angew Chem Int Ed Engl 55:8013–8017

    Article  CAS  Google Scholar 

  6. Walensky LD, Bird GH (2014) Hydrocarbon-stapled peptides: principles, practice, and progress. J Med Chem 57:6275–6288

    Article  CAS  Google Scholar 

  7. Walensky LD, Kung AL, Escher I et al (2004) Activation of apoptosis in vivo by a hydrocarbon-stapled BH3 helix. Science 305:1466–1470

    Article  CAS  Google Scholar 

  8. Edwards TA, Wilson AJ (2011) Helix-mediated protein-protein interactions as targets for intervention using foldamers. Amino Acids 41:743–754

    Article  CAS  Google Scholar 

  9. Tu L, Wang D, Li Z (2019) Design and synthetic strategies for helical peptides. Methods Mol Biol 2001:107–131

    Article  CAS  Google Scholar 

  10. Zhao H, Liu QS, Geng H et al (2016) Crosslinked aspartic acids as helix-nucleating templates. Angew Chem Int Ed 55:12088–12093

    Article  CAS  Google Scholar 

  11. Kawamoto SA, Coleska A, Ran X et al (2012) Design of triazole-stapled BCL9 alpha-helical peptides to target the beta-catenin/B-cell CLL/lymphoma 9 (BCL9) protein-protein interaction. J Med Chem 55:1137–1146

    Article  CAS  Google Scholar 

  12. Lau YH, De Andrade P, Wu YT et al (2015) Peptide stapling techniques based on different macrocyclisation chemistries. Chem Soc Rev 44:91–102

    Article  CAS  Google Scholar 

  13. Jackson DY, King DS, Chmielewski J et al (1991) General-approach to the synthesis of short alpha-helical peptides. J Am Chem Soc 113:9391–9392

    Article  CAS  Google Scholar 

  14. Li Y, Lian CS, Hou ZF et al (2020) Intramolecular methionine alkylation constructs sulfonium tethered peptides for protein conjugation. Chem Commun 56:3741–3744

    Article  CAS  Google Scholar 

  15. Wang DY, Yu MY, Liu N et al (2019) A sulfonium tethered peptide ligand rapidly and selectively modifies protein cysteine in vicinity. Chem Sci 10:4966–4972

    Article  CAS  Google Scholar 

  16. Schiavone NM, Pirrone GF, Guetschow ED et al (2019) Combination of circular dichroism spectroscopy and size-exclusion chromatography coupled with HDX-MS for studying global conformational structures of peptides in solution. Talanta 194:177–182

    Article  CAS  Google Scholar 

  17. Hamrang Z, Rattray NJW, Pluen A (2013) Proteins behaving badly: emerging technologies in profiling biopharmaceutical aggregation. Trends Biotechnol 31:448–458

    Article  CAS  Google Scholar 

  18. Ezerski JC, Zhang P, Jennings NC et al (2020) Molecular dynamics ensemble refinement of intrinsically disordered peptides according to deconvoluted spectra from circular dichroism. Biophys J 118:1665–1678

    Article  CAS  Google Scholar 

  19. Rogers DM, Jasim SB, Dyer NT et al (2019) Electronic circular dichroism spectroscopy of proteins. Chem 5:2751–2774

    Article  CAS  Google Scholar 

  20. Hoang HN, Abbenante G, Hill TA et al (2012) Folding pentapeptides into left and right handed alpha helices. Tetrahedron 68:4513–4516

    Article  CAS  Google Scholar 

  21. Gooding EA, Sharma S, Petty SA et al (2013) pH-dependent helix folding dynamics of poly-glutamic acid. Chem Phys 422:115–123

    Article  CAS  Google Scholar 

  22. Rao T, Ruiz-Gomez G, Hill TA et al (2013) Truncated and helix-constrained peptides with high affinity and specificity for the cFos coiled-coil of AP-1. PLoS One 8:e59415

    Article  Google Scholar 

  23. Morales P, Jimenez MA (2019) Design and structural characterisation of monomeric water-soluble alpha-helix and beta-hairpin peptides: State-of-the-art. Arch Biochem Biophys 661:149–167

    Article  CAS  Google Scholar 

  24. Hong JB, Jing QQ, Yao LS (2013) The protein amide H-1(N) chemical shift temperature coefficient reflects thermal expansion of the N-H center dot center dot center dot O=C hydrogen bond. J Biomol NMR 55:71–78

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge financial support from the Natural Science Foundation of China grants 21778009, and 21977010; National Key Research and Development Program “Synthetic Biology” Key Special Project of China, 2018YFA0902504; the Natural Science Foundation of Guangdong Province, 2020A1515010522; the Shenzhen Science and Technology Innovation Committee, JCYJ20180507181527112, JCYJ201805081522131455, and JCYJ20170817172023838. We acknowledge financial support from Beijing National Laboratory of Molecular Science open grant BNLMS20160112 and Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions grant 2019SHIBS0004. This work is supported by High-Performance Computing Platform of Peking University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Feng Yin or Zigang Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Yang, F., Yin, F., Li, Z. (2022). Helical Stabilization of Peptide Macrocycles by Stapled Architectures. In: Coppock, M.B., Winton, A.J. (eds) Peptide Macrocycles. Methods in Molecular Biology, vol 2371. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1689-5_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1689-5_21

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1688-8

  • Online ISBN: 978-1-0716-1689-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics