Skip to main content

Metabolic Labeling of Primary Neurons Using Carbohydrate Click Chemistry

  • Protocol
  • First Online:
Glycosylation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2370))

Abstract

Glycans play an important role in many neuronal processes, such as neurotransmitter release and reuptake, cell–cell communication and adhesion, modulation of ion channel activity, and immune function. Carbohydrate click chemistry is a powerful technique for studying glycan function and dynamics in vitro, in vivo, and ex vivo. Here, we use commercially available synthetic tetraacetylated azido sugars, copper and copper-free click chemistry to metabolically label and analyze primary rat cortical neurons. In addition, we use high resolution confocal and STED microscopy to image and analyze different forms of glycosylation in ultrahigh resolution. We observe different patterns of GlcNAz, GalNAz, and ManNAz distribution at different stages of neuronal development. We also observe highly sialylated structures on the neuronal plasma membrane, which warrant further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Takeuchi Y, Morise J, Morita I, Takematsu H, Oka S (2015) Role of site-specific N-glycans expressed on GluA2 in the regulation of cell surface expression of AMPA-type glutamate receptors. PLoS One 10(8):e0135644. https://doi.org/10.1371/journal.pone.0135644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kandel MB, Yamamoto S, Midorikawa R, Morise J, Wakazono Y, Oka S, Takamiya K (2018) N-glycosylation of the AMPA-type glutamate receptor regulates cell surface expression and tetramer formation affecting channel function. J Neurochem 147(6):730–747. https://doi.org/10.1111/jnc.14565

    Article  CAS  PubMed  Google Scholar 

  3. Rickert KW, Imperiali B (1995) Analysis of the conserved glycosylation site in the nicotinic acetylcholine receptor: potential roles in complex assembly. Chem Biol 2(11):751–759. https://doi.org/10.1016/1074-5521(95)90103-5

    Article  CAS  PubMed  Google Scholar 

  4. Poulter L, Earnest JP, Stroud RM, Burlingame AL (1989) Structure, oligosaccharide structures, and posttranslationally modified sites of the nicotinic acetylcholine receptor. Proc Natl Acad Sci U S A 86(17):6645–6649. https://doi.org/10.1073/pnas.86.17.6645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. daCosta CJ, Kaiser DE, Baenziger JE (2005) Role of glycosylation and membrane environment in nicotinic acetylcholine receptor stability. Biophys J 88(3):1755–1764. https://doi.org/10.1529/biophysj.104.052944

    Article  CAS  PubMed  Google Scholar 

  6. Scott H, Panin VM (2014) N-glycosylation in regulation of the nervous system. Adv Neurobiol 9:367–394. https://doi.org/10.1007/978-1-4939-1154-7_17

    Article  PubMed  PubMed Central  Google Scholar 

  7. Scott H, Panin VM (2014) The role of protein N-glycosylation in neural transmission. Glycobiology 24(5):407–417. https://doi.org/10.1093/glycob/cwu015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Grunewald S, Matthijs G, Jaeken J (2002) Congenital disorders of glycosylation: a review. Pediatr Res 52(5):618–624. https://doi.org/10.1203/00006450-200211000-00003

    Article  PubMed  Google Scholar 

  9. Marquardt T, Denecke J (2003) Congenital disorders of glycosylation: review of their molecular bases, clinical presentations and specific therapies. Eur J Pediatr 162(6):359–379. https://doi.org/10.1007/s00431-002-1136-0

    Article  CAS  PubMed  Google Scholar 

  10. Kleene R, Schachner M (2004) Glycans and neural cell interactions. Nat Rev Neurosci 5(3):195–208. https://doi.org/10.1038/nrn1349

    Article  CAS  PubMed  Google Scholar 

  11. Medina-Cano D, Ucuncu E, Nguyen LS, Nicouleau M, Lipecka J, Bizot JC, Thiel C, Foulquier F, Lefort N, Faivre-Sarrailh C, Colleaux L, Guerrera IC, Cantagrel V (2018) High N-glycan multiplicity is critical for neuronal adhesion and sensitizes the developing cerebellum to N-glycosylation defect. Elife 7. https://doi.org/10.7554/eLife.38309

  12. Linnartz B, Kopatz J, Tenner AJ, Neumann H (2012) Sialic acid on the neuronal glycocalyx prevents complement C1 binding and complement receptor-3-mediated removal by microglia. J Neurosci 32(3):946–952. https://doi.org/10.1523/JNEUROSCI.3830-11.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mahal LK, Yarema KJ, Bertozzi CR (1997) Engineering chemical reactivity on cell surfaces through oligosaccharide biosynthesis. Science 276(5315):1125–1128. https://doi.org/10.1126/science.276.5315.1125

    Article  CAS  PubMed  Google Scholar 

  14. Prescher JA, Dube DH, Bertozzi CR (2004) Chemical remodelling of cell surfaces in living animals. Nature 430(7002):873–877. https://doi.org/10.1038/nature02791

    Article  CAS  PubMed  Google Scholar 

  15. Laughlin ST, Baskin JM, Amacher SL, Bertozzi CR (2008) In vivo imaging of membrane-associated glycans in developing zebrafish. Science 320(5876):664–667. https://doi.org/10.1126/science.1155106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Laughlin ST, Bertozzi CR (2009) Imaging the glycome. Proc Natl Acad Sci U S A 106(1):12–17. https://doi.org/10.1073/pnas.0811481106

    Article  PubMed  Google Scholar 

  17. Baskin JM, Prescher JA, Laughlin ST, Agard NJ, Chang PV, Miller IA, Lo A, Codelli JA, Bertozzi CR (2007) Copper-free click chemistry for dynamic in vivo imaging. Proc Natl Acad Sci U S A 104(43):16793–16797. https://doi.org/10.1073/pnas.0707090104

    Article  PubMed  PubMed Central  Google Scholar 

  18. Meldal M, Tornoe CW (2008) Cu-catalyzed azide-alkyne cycloaddition. Chem Rev 108(8):2952–3015. https://doi.org/10.1021/cr0783479

    Article  CAS  PubMed  Google Scholar 

  19. Presolski SI, Hong VP, Finn MG (2011) Copper-catalyzed azide-alkyne click chemistry for bioconjugation. Curr Protoc Chem Biol 3(4):153–162. https://doi.org/10.1002/9780470559277.ch110148

    Article  PubMed  PubMed Central  Google Scholar 

  20. Kang K, Joo S, Choi JY, Geum S, Hong SP, Lee SY, Kim YH, Kim SM, Yoon MH, Nam Y, Lee KB, Lee HY, Choi IS (2015) Tissue-based metabolic labeling of polysialic acids in living primary hippocampal neurons. Proc Natl Acad Sci U S A 112(3):E241–E248. https://doi.org/10.1073/pnas.1419683112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gavin P. Davey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Hayes, J.M., O’Hara, D.M., Davey, G.P. (2022). Metabolic Labeling of Primary Neurons Using Carbohydrate Click Chemistry. In: Davey, G.P. (eds) Glycosylation. Methods in Molecular Biology, vol 2370. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1685-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1685-7_16

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1684-0

  • Online ISBN: 978-1-0716-1685-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics