Skip to main content

Synthesis of Bacteria Imprinted Polymers by Pickering Emulsion Polymerization

  • Protocol
  • First Online:
Molecularly Imprinted Polymers

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2359))

  • 813 Accesses

Abstract

Molecularly imprinted polymers have been studied for a long time and have found useful applications in many fields. In most cases, small organic molecules are used as templates to synthesize imprinted polymers. In contrast to low molecular weight targets, large biological molecules and cells are more challenging to use as templates to synthesize cell-recognizing materials. This chapter presents an interfacial imprinting method to synthesize bacteria-recognizing polymer beads using Pickering emulsion polymerization. The tendency of bacteria to reside between two immiscible liquids is utilized to create surface-imprinted binding sites on cross-linked polymer microspheres.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Yang Y, Fang Z, Chen X, Zhang W, Xie Y, Chen Y, Liu Z, Yuan W (2017) An overview of Pickering emulsions: solid-particle materials, classification, morphology, and applications. Front Pharmacol 8:287

    Article  Google Scholar 

  2. Marku D, Wahlgren M, Rayner M, Sjöö M, Timgren A (2012) Characterization of starch Pickering emulsions for potential applications in topical formulations. Int J Pharm 428:1–7

    Article  CAS  Google Scholar 

  3. Matos M, Laca A, Rea F, Iglesias O, Rayner M, Gutiérrez G (2018) O/W emulsions stabilized by OSA-modified starch granules versus non-ionic surfactant: Stability, rheological behaviour and resveratrol encapsulation. J Food Eng 222:207–217

    Article  CAS  Google Scholar 

  4. Zhao X, Yu G, Li J, Feng Y, Zhang L, Peng Y, Tang Y, Wang L (2018) Eco-friendly Pickering emulsion stabilized by silica nanoparticles dispersed with high-molecular-weight amphiphilic alginate derivatives. ACS Sustain Chem Eng 6:4105–4114

    Article  CAS  Google Scholar 

  5. Chevalier Y, Bolzinger MA (2013) Emulsions stabilized with solid nanoparticles: Pickering emulsions. Colloid Surface A 439:23–34

    Article  CAS  Google Scholar 

  6. Lin Z, Zhang Z, Li Y, Deng Y (2016) Magnetic nano-Fe3O4 stabilized Pickering emulsion liquid membrane for selective extraction and separation. Chem Eng J 288:305–311

    Article  CAS  Google Scholar 

  7. Leclercq L, Nardello-Rataj V (2016) Pickering emulsions based on cyclodextrins: a smart solution for antifungal azole derivatives topical delivery. Eur J Pharm Sci 82:126–137

    Article  CAS  Google Scholar 

  8. Cheng H, Li Z, Li Y, Shi Z, Bao M, Han C, Wang Z (2020) Multi-functional magnetic bacteria as efficient and economical Pickering emulsifiers for encapsulation and removal of oil from water. J Colloid Interf Sci 560:349–358

    Article  CAS  Google Scholar 

  9. Srivastava SP, Singh HD, Baruah JN, Krishna PV, Iyengar MS (1970) Physicochemical studies on the water-yeast cells-gas-oil system. J Appl Chem 20:105–108

    Article  CAS  Google Scholar 

  10. Firoozmand H, Rousseau D (2016) Microbial cells as colloidal particles: Pickering oil-in-water emulsions stabilized by bacteria and yeast. Food Res Int 81:66–73

    Article  CAS  Google Scholar 

  11. Wongkongkatep P, Manopwisedjaroen K, Tiposoth P, Archakunakorn S, Pongtharangkul T, Suphantharika M, Honda K, Hamachi I, Wongkongkatep J (2012) Bacteria interface Pickering emulsions stabilized by self-assembled bacteria–chitosan network. Langmuir 28:5729–5736

    Article  CAS  Google Scholar 

  12. Destribats M, Rouvet M, Gehin-Delval C, Schmitt C, Binks BP (2014) Emulsions stabilised by whey protein microgel particles: towards food-grade Pickering emulsions. Soft Matter 10:6941–6954

    Article  CAS  Google Scholar 

  13. Frelichowska J, Bolzinger MA, Valour JP, Mouaziz H, Pelletier J, Chevalier Y (2009) Pickering w/o emulsions: drug release and topical delivery. Int J Pharm 368:7–15

    Article  CAS  Google Scholar 

  14. Sharma T, Kumar GS, Chon BH, Sangwai JS (2015) Thermal stability of oil-in-water Pickering emulsion in the presence of nanoparticle, surfactant, and polymer. J Ind Eng Chem 22:324–334

    Article  CAS  Google Scholar 

  15. Ou H, Chen Q, Pan J, Zhang Y, Huang Y, Qi X (2015) Selective removal of erythromycin by magnetic imprinted polymers synthesized from chitosan-stabilized Pickering emulsion. J Hazard Mater 289:28–37

    Article  CAS  Google Scholar 

  16. Razavipanah I, Alipour E, Deiminiat B, Rounaghi GH (2018) A novel electrochemical imprinted sensor for ultrasensitive detection of the new psychoactive substance “Mephedrone”. Biosens Bioelectron 119:163–169

    Article  CAS  Google Scholar 

  17. Bie Z, Chen Y, Ye J, Wang S, Liu Z (2015) Boronate-affinity glycan-oriented surface imprinting: a new strategy to mimic lectins for the recognition of an intact glycoprotein and its characteristic fragments. Angew Chem Int Edit 54:10211–10215

    Article  CAS  Google Scholar 

  18. Cumbo A, Lorber B, Corvini PFX, Meier W, Shahgaldian P (2013) A synthetic nanomaterial for virus recognition produced by surface imprinting. Nat Commun 4:1503

    Article  Google Scholar 

  19. van Grinsven B, Eersels K, Akkermans O, Ellermann S, Kordek A, Peeters M, Deschaume O, Bartic C, Diliën H, Steen Redeker E, Wagner P (2016) Label-free detection of Escherichia coli based on thermal transport through surface imprinted polymers. ACS Sensors 1:1140–1147

    Article  Google Scholar 

  20. Kunath S, Panagiotopoulou M, Maximilien J, Marchyk N, Sänger J, Haupt K (2015) Cell and tissue imaging with molecularly imprinted polymers as plastic antibody mimics. Adv Healthc Mater 4:1322–1326

    Article  CAS  Google Scholar 

  21. Kupai J, Razali M, Buyuktiryaki S, Kecili R, Szekely G (2017) Long-term stability and reusability of molecularly imprinted polymers. Polym Chem 8:666–673

    Article  CAS  Google Scholar 

  22. Shen X, Svensson Bonde J, Kamra T, Bülow L, Leo JC, Linke D, Ye L (2014) Bacterial imprinting at Pickering emulsion interfaces. Angew Chem Int Edit 53:10687–10690

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Swedish Research Council (VR) and the Swedish Research Council for Environment, Agricultural Sciences and Spatial Planning (FORMAS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Ye .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Gong, H., Shen, X., Ye, L. (2021). Synthesis of Bacteria Imprinted Polymers by Pickering Emulsion Polymerization. In: Martín-Esteban, A. (eds) Molecularly Imprinted Polymers. Methods in Molecular Biology, vol 2359. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1629-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1629-1_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1628-4

  • Online ISBN: 978-1-0716-1629-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics