Skip to main content

Molecular Biology and Genetic Tools to Investigate Functional Redundancy Among Fe-S Cluster Carriers in E. coli

  • Protocol
  • First Online:
Fe-S Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2353))

Abstract

Iron-sulfur (Fe-S) clusters are among the oldest protein cofactors, and Fe-S cluster-based chemistry has shaped the cellular metabolism of all living organisms. Over the last 30 years, thanks to molecular biology and genetic approaches, numerous actors for Fe-S cluster assembly and delivery to apotargets have been uncovered. In prokaryotes, Escherichia coli is the best-studied for its convenience of growth and its genetic amenability. During evolution, redundant ways to secure the supply of Fe-S clusters to the client proteins have emerged in E. coli. Disrupting gene expression is essential for gene function exploration, but redundancy can blur the interpretations as it can mask the role of important biogenesis components. This chapter describes molecular biology and genetic strategies that have permitted to reveal the E. coli Fe-S cluster conveying component network, composition, organization, and plasticity. In this chapter, we will describe the following genetic methods to investigate the importance of E. coli Fe-S cluster carriers: one-step inactivation of chromosomal genes in E. coli using polymerase chain reaction (PCR) products, P1 transduction, arabinose-inducible expression system, mevalonate (MVA) genetic by-pass, sensitivity tests to oxidative stress and iron starvation, β-galactosidase assay, gentamicin survival test, and Hot Fusion cloning method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Beinert H (2000) Iron-sulfur proteins: ancient structures, still full of surprises. J Biol Inorg Chem 5:2–15

    Article  CAS  PubMed  Google Scholar 

  2. Roche B, Aussel L, Ezraty B et al (2013) Iron/sulfur proteins biogenesis in prokaryotes: formation, regulation and diversity. Biochim Biophys Acta 1827:455–469

    Article  CAS  PubMed  Google Scholar 

  3. Lill R, Dutkiewicz R, Freibert SA et al (2015) The role of mitochondria and the CIA machinery in the maturation of cytosolic and nuclear iron-sulfur proteins. Eur J Cell Biol 94:280–291

    Article  CAS  PubMed  Google Scholar 

  4. Lill R, Freibert S-A (2020) Mechanisms of mitochondrial iron-sulfur protein biogenesis. Annu Rev Biochem 89:471–499

    Article  CAS  PubMed  Google Scholar 

  5. Maio N, Rouault TA (2020) Outlining the complex pathway of mammalian Fe-S cluster biogenesis. Trends Biochem Sci 45:411–426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Takahashi Y, Tokumoto U (2002) A third bacterial system for the assembly of iron-sulfur clusters with homologs in archaea and plastids. J Biol Chem 277:28380–28383

    Article  CAS  PubMed  Google Scholar 

  7. Tokumoto U, Kitamura S, Fukuyama K et al (2004) Interchangeability and distinct properties of bacterial Fe-S cluster assembly systems: functional replacement of the isc and suf operons in Escherichia coli with the nifSU-like operon from helicobacter pylori. J Biochem 136:199–209

    Article  CAS  PubMed  Google Scholar 

  8. Patzer SI, Hantke K (1999) SufS is a NifS-like protein, and SufD is necessary for stability of the [2Fe-2S] FhuF protein in Escherichia coli. J Bacteriol 181:3307–3309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Outten FW, Djaman O, Storz G (2004) A suf operon requirement for Fe-S cluster assembly during iron starvation in Escherichia coli. Mol Microbiol 52:861–872

    Article  CAS  PubMed  Google Scholar 

  10. Nachin L, Loiseau L, Expert D et al (2003) SufC: an unorthodox cytoplasmic ABC/ATPase required for [Fe-S] biogenesis under oxidative stress. EMBO J 22:427–437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Rincon-Enriquez G, Crété P, Barras F et al (2008) Biogenesis of Fe/S proteins and pathogenicity: IscR plays a key role in allowing Erwinia chrysanthemi to adapt to hostile conditions. Mol Microbiol 67:1257–1273

    Article  CAS  PubMed  Google Scholar 

  12. Przybyla-Toscano J, Roland M, Gaymard F et al (2018) Roles and maturation of iron-sulfur proteins in plastids. J Biol Inorg Chem 23:545–566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Garcia PS, Gribaldo S, Py B et al (2019) The SUF system: an ABC ATPase-dependent protein complex with a role in Fe-S cluster biogenesis. Res Microbiol 170(8):426–434

    Article  CAS  PubMed  Google Scholar 

  14. Baussier C, Fakroun S, Aubert C et al (2020) Making iron-sulfur cluster: structure, regulation and evolution of the bacterial ISC system. Adv Microb Physiol 76:1–39

    Article  PubMed  Google Scholar 

  15. Pérard J, Ollagnier de Choudens S (2018) Iron-sulfur clusters biogenesis by the SUF machinery: close to the molecular mechanism understanding. J Biol Inorg Chem 23:581–596

    Article  PubMed  CAS  Google Scholar 

  16. Trotter V, Vinella D, Loiseau L et al (2009) The CsdA cysteine desulphurase promotes Fe/S biogenesis by recruiting Suf components and participates to a new Sulphur transfer pathway by recruiting CsdL (ex-YgdL), a ubiquitin-modifying-like protein. Mol Microbiol 74:1527–1542

    Article  CAS  PubMed  Google Scholar 

  17. Vinella D, Brochier-Armanet C, Loiseau L et al (2009) Iron-sulfur (Fe/S) protein biogenesis: phylogenomic and genetic studies of A-type carriers. PLoS Genet 5:e1000497

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Loiseau L, Gerez C, Bekker M et al (2007) ErpA, an iron sulfur (Fe S) protein of the A-type essential for respiratory metabolism in Escherichia coli. Proc Natl Acad Sci U S A 104:13626–13631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ollagnier-de-Choudens S, Sanakis Y, Fontecave M (2004) SufA/IscA: reactivity studies of a class of scaffold proteins involved in [Fe-S] cluster assembly. J Biol Inorg Chem 9:828–838

    Article  CAS  PubMed  Google Scholar 

  20. Ollagnier-de-Choudens S, Mattioli T, Takahashi Y et al (2001) Iron-sulfur cluster assembly: characterization of IscA and evidence for a specific and functional complex with ferredoxin. J Biol Chem 276:22604–22607

    Article  CAS  PubMed  Google Scholar 

  21. Ollagnier-de Choudens S, Nachin L, Sanakis Y et al (2003) SufA from Erwinia chrysanthemi. Characterization of a scaffold protein required for iron-sulfur cluster assembly. J Biol Chem 278:17993–18001

    Article  CAS  PubMed  Google Scholar 

  22. Gupta V, Sendra M, Naik SG et al (2009) Native Escherichia coli SufA, coexpressed with SufBCDSE, purifies as a [2Fe-2S] protein and acts as an Fe-S transporter to Fe-S target enzymes. J Am Chem Soc 131:6149–6153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Angelini S, Gerez C, Ollagnier-de Choudens S et al (2008) NfuA, a new factor required for maturing Fe/S proteins in Escherichia coli under oxidative stress and iron starvation conditions. J Biol Chem 283:14084–14091

    Article  CAS  PubMed  Google Scholar 

  24. Bandyopadhyay S, Naik SG, O’Carroll IP et al (2008) A proposed role for the Azotobacter vinelandii NfuA protein as an intermediate iron-sulfur cluster carrier. J Biol Chem 283:14092–14099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Romsang A, Duang-Nkern J, Saninjuk K et al (2018) Pseudomonas aeruginosa nfuA: gene regulation and its physiological roles in sustaining growth under stress and anaerobic conditions and maintaining bacterial virulence. PLoS One 13:e0202151

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Py B, Gerez C, Angelini S et al (2012) Molecular organization, biochemical function, cellular role and evolution of NfuA, an atypical Fe-S carrier. Mol Microbiol 86:155–171

    Article  CAS  PubMed  Google Scholar 

  27. Tong W-H, Jameson GNL, Huynh BH et al (2003) Subcellular compartmentalization of human Nfu, an iron-sulfur cluster scaffold protein, and its ability to assemble a [4Fe-4S] cluster. Proc Natl Acad Sci U S A 100:9762–9767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Benoit SL, Holland AA, Johnson MK et al (2018) Iron-sulfur protein maturation in helicobacter pylori: identifying a Nfu-type cluster carrier protein and its iron-sulfur protein targets. Mol Microbiol 108:379–396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Berger N, Vignols F, Przybyla-Toscano J et al (2020) Identification of client iron-sulfur proteins of the chloroplastic NFU2 transfer protein in Arabidopsis thaliana. J Exp Bot 71:4171–4187

    Article  CAS  PubMed  Google Scholar 

  30. Mashruwala AA, Pang YY, Rosario-Cruz Z et al (2015) Nfu facilitates the maturation of iron-sulfur proteins and participates in virulence in Staphylococcus aureus. Mol Microbiol 95:383–409

    Article  CAS  PubMed  Google Scholar 

  31. Py B, Gerez C, Huguenot A et al (2018) The ErpA/NfuA complex builds an oxidation-resistant Fe-S cluster delivery pathway. J Biol Chem 293:7689–7702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Py B, Barras F (2015) Genetic approaches of the Fe-S cluster biogenesis process in bacteria: historical account, methodological aspects and future challenges. Biochim Biophys Acta 1853:1429–1435

    Article  CAS  PubMed  Google Scholar 

  33. Ollagnier de Choudens S, Barras F (2017) Genetic, biochemical, and biophysical methods for studying FeS proteins and their assembly. Meth Enzymol 595:1–32

    Article  Google Scholar 

  34. Li X, Imlay JA (2018) Improved measurements of scant hydrogen peroxide enable experiments that define its threshold of toxicity for Escherichia coli. Free Radic Biol Med 120:217–227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Miller JH (1993) A short course in bacterial genetics – a laboratory manual and handbook for Escherichia coli and related bacteria. Cold Spring Harbor 1992. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

    Google Scholar 

  36. Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97:6640–6645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Murphy KC (1998) Use of bacteriophage lambda recombination functions to promote gene replacement in Escherichia coli. J Bacteriol 180:2063–2071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ausubel I, Frederick M (1987) Molecular biology technique. In: Current protocols in molecular biology. Wiley & Sons Inc, New York, New York

    Google Scholar 

  39. Baba T, Ara T, Hasegawa M et al (2006) Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol 2:2006.0008

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Yamamoto N, Nakahigashi K, Nakamichi T et al (2009) Update on the Keio collection of Escherichia coli single-gene deletion mutants. Mol Syst Biol 5:335

    Article  PubMed  PubMed Central  Google Scholar 

  41. Roux A, Beloin C, Ghigo J-M (2005) Combined inactivation and expression strategy to study gene function under physiological conditions: application to identification of new Escherichia coli adhesins. J Bacteriol 187:1001–1013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Gerstel A, Zamarreño Beas J, Duverger Y, Bouveret E, Barras F, Py B (2020) Oxidative stress antagonizes fluoroquinolone drug sensitivity via the SoxR-SUF Fe-S cluster homeostatic axis. PLoS Genet 16(11):e1009198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Larson MH, Gilbert LA, Wang X et al (2013) CRISPR interference (CRISPRi) for sequence-specific control of gene expression. Nat Protoc 8:2180–2196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Campos N, Rodríguez-Concepción M, Sauret-Güeto S et al (2001) Escherichia coli engineered to synthesize isopentenyl diphosphate and dimethylallyl diphosphate from mevalonate: a novel system for the genetic analysis of the 2-C-methyl-d-erythritol 4-phosphate pathway for isoprenoid biosynthesis. Biochem J 353:59–67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Seaver LC, Imlay JA (2001) Alkyl hydroperoxide reductase is the primary scavenger of endogenous hydrogen peroxide in Escherichia coli. J Bacteriol 183:7173–7181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Jang S, Imlay JA (2010) Hydrogen peroxide inactivates the Escherichia coli Isc iron-Sulphur assembly system, and OxyR induces the Suf system to compensate. Mol Microbiol 78:1448–1467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Martin JE, Waters LS, Storz G et al (2015) The Escherichia coli small protein MntS and exporter MntP optimize the intracellular concentration of manganese. PLoS Genet 11:e1004977

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Vinella D, Loiseau L, Ollagnier de Choudens S et al (2013) In vivo [Fe-S] cluster acquisition by IscR and NsrR, two stress regulators in Escherichia coli. Mol Microbiol 87:493–508

    Article  CAS  PubMed  Google Scholar 

  49. Burschel S, Kreuzer Decovic D, Nuber F et al (2019) Iron-sulfur cluster carrier proteins involved in the assembly of Escherichia coli NADH:ubiquinone oxidoreductase (complex I). Mol Microbiol 111:31–45

    Article  CAS  PubMed  Google Scholar 

  50. Roche B, Agrebi R, Huguenot A et al (2015) Turning Escherichia coli into a Frataxin-dependent organism. PLoS Genet 11:e1005134

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Ezraty B, Vergnes A, Banzhaf M et al (2013) Fe-S cluster biosynthesis controls uptake of aminoglycosides in a ROS-less death pathway. Science 340:1583–1587

    Article  CAS  PubMed  Google Scholar 

  52. Pinske C, Sawers RG (2012) Delivery of iron-sulfur clusters to the hydrogen-oxidizing [NiFe]-hydrogenases in Escherichia coli requires the A-type carrier proteins ErpA and IscA. PLoS One 7:e31755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Pinske C, Jaroschinsky M, Sawers RG (2013) Levels of control exerted by the Isc iron-sulfur cluster system on biosynthesis of the formate hydrogenlyase complex. Microbiology 159:1179–1189

    Article  CAS  PubMed  Google Scholar 

  54. Pinske C, Sawers RG (2012) A-type carrier protein ErpA is essential for formation of an active formate-nitrate respiratory pathway in Escherichia coli K-12. J Bacteriol 194:346–353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Fu C, Donovan WP, Shikapwashya-Hasser O et al (2014) Hot fusion: an efficient method to clone multiple DNA fragments as well as inverted repeats without ligase. PLoS One 9:e115318

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Hartley JL, Temple GF, Brasch MA (2000) DNA cloning using in vitro site-specific recombination. Genome Res 10:1788–1795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Beilschmidt LK, Ollagnier de Choudens S, Fournier M et al (2017) ISCA1 is essential for mitochondrial Fe4S4 biogenesis in vivo. Nat Commun 8:15124

    Article  PubMed  PubMed Central  Google Scholar 

  58. Karimova G, Pidoux J, Ullmann A et al (1998) A bacterial two-hybrid system based on a reconstituted signal transduction pathway. Proc Natl Acad Sci U S A 95:5752–5756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Karimova G, Gauliard E, Davi M et al (2017) Protein-protein interaction: bacterial two-hybrid. Methods Mol Biol 1615:159–176

    Article  PubMed  CAS  Google Scholar 

  60. Takagi M, Kuzuyama T, Takahashi S et al (2000) A gene cluster for the mevalonate pathway from Streptomyces sp. strain CL190. J Bacteriol 182:4153–4157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Tanaka N, Kanazawa M, Tonosaki K et al (2016) Novel features of the ISC machinery revealed by characterization of Escherichia coli mutants that survive without iron-sulfur clusters. Mol Microbiol 99:835–848

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Thanks are due to all members of the Py group and the Barras group (past in Marseille, and present in Paris) who contributed to studies on Fe-S cluster biogenesis. We thank the Ezraty group (Marseille) for sharing material resources and fruitful discussions. Funding sources were from the Center National de la Recherche Scientifique, Aix-Marseille Université, Agence Nationale de la Recherche (JPAIMR «Combinatorial», Blanc «FRACOL»), ERACoBioTech « Iron Plug’n Play », and Association Française de l’Ataxie de Friedreich.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Béatrice Py .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Duverger, Y., Py, B. (2021). Molecular Biology and Genetic Tools to Investigate Functional Redundancy Among Fe-S Cluster Carriers in E. coli . In: Dos Santos, P.C. (eds) Fe-S Proteins. Methods in Molecular Biology, vol 2353. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1605-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1605-5_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1604-8

  • Online ISBN: 978-1-0716-1605-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics