Skip to main content

General Methods to Produce and Assemble Recombinant Spider Silk Proteins

  • Protocol
  • First Online:
Fibrous Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2347))

  • 1335 Accesses

Abstract

Orb-weaving spiders are known to spin up to seven types of silks/glues from different silk glands. The inherent mechanical variety of these silks makes them attractive models for a variety of biomaterial design, from superglues to extremely strong and/or extendible fibers. Spider silk spinning is a process in which spinning dope stored in specific glands assembles into fibrils upon chemical and mechanical stimuli. The exploration of silk protein assembly into controllable filaments is vital for both uncovering biological functions and molecular structure relationship, as well as fabricating new biomaterials. This chapter describes the methods for biosynthesis and assembly of recombinant spider silk proteins, which will provide insights into the mechanism exploration of fiber formation and spider silk-based material manufacture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Omenetto FG, Kaplan DL (2010) New opportunities for an ancient material. Science 329:528

    Article  CAS  Google Scholar 

  2. Vollrath F (2000) Strength and structure of spiders’ silks. Rev Mol Biotechnol 74:67–83

    Article  CAS  Google Scholar 

  3. Lewis RV (2006) Spider silk: ancient ideas for new biomaterials. Chem Rev 106:3762–3774

    Article  CAS  Google Scholar 

  4. Kluge JA, Rabotyagova O, Leisk GG, Kaplan DL (2008) Spider silks and their applications. Trends Biotechnol 26:244–251

    Article  CAS  Google Scholar 

  5. Leal-Egaña A, Scheibel T (2010) Silk-based materials for biomedical applications. Biotechnol Appl Biochem 55:155–167

    Article  Google Scholar 

  6. Schacht K, Jüngst T, Schweinlin M, Ewald A, Groll J, Scheibel T (2015) Biofabrication of cell-loaded 3d spider silk constructs. Angew Chem Int Ed 54:2816–2820

    Article  CAS  Google Scholar 

  7. Sponner A (2007) Spider silk as a resource for future biotechnologies. Entomol Res 37:238–250

    Article  Google Scholar 

  8. Vepari C, Kaplan DL (2007) Silk as a biomaterial. Prog Polym Sci 32:991–1007

    Article  CAS  Google Scholar 

  9. Vollrath F, Porter D (2006) Spider silk as a model biomaterial. Appl Phys A Mater Sci Process 82:205–212

    Article  CAS  Google Scholar 

  10. Norn CH, André I (2016) Computational design of protein self-assembly. Curr Opin Struct Biol 39:39–45

    Article  CAS  Google Scholar 

  11. Saric M, Scheibel T (2019) Engineering of silk proteins for materials applications. Curr Opin Biotechnol 60:213–220

    Article  CAS  Google Scholar 

  12. Huang P-S, Boyken SE, Baker D (2016) The coming of age of de novo protein design. Nature 537:320–327

    Article  CAS  Google Scholar 

  13. Rising A, Hjälm G, Engström W, Johansson J (2006) N-terminal nonrepetitive domain common to dragline, flagelliform, and cylindriform spider silk proteins. Biomacromolecules 7:3120–3124

    Article  CAS  Google Scholar 

  14. Gatesy J, Hayashi C, Motriuk D, Woods J, Lewis R (2001) Extreme diversity, conservation, and convergence of spider silk fibroin sequences. Science 291:2603

    Article  CAS  Google Scholar 

  15. Tokareva O, Jacobsen M, Buehler M, Wong J, Kaplan DL (2014) Structure–function–property–design interplay in biopolymers: spider silk. Acta Biomater 10:1612–1626

    Article  CAS  Google Scholar 

  16. Lin Z, Huang W, Zhang J, Fan J-S, Yang D (2009) Solution structure of eggcase silk protein and its implications for silk fiber formation. Proc Natl Acad Sci U S A 106:8906

    Article  CAS  Google Scholar 

  17. Römer L, Scheibel T (2008) The elaborate structure of spider silk: structure and function of a natural high performance fiber. Prion 2:154–161

    Article  Google Scholar 

  18. Garb JE, Haney RA, Schwager EE, Gregorič M, Kuntner M, Agnarsson I, Blackledge TA (2019) The transcriptome of Darwin’s bark spider silk glands predicts proteins contributing to dragline silk toughness. Commun Biol 2:275

    Article  Google Scholar 

  19. Hayashi CY, Shipley NH, Lewis RV (1999) Hypotheses that correlate the sequence, structure, and mechanical properties of spider silk proteins. Int J Biol Macromol 24:271–275

    Article  CAS  Google Scholar 

  20. Rising A, Nimmervoll H, Grip S, Fernandez-Arias A, Storckenfeldt E, Knight DP, Vollrath F, Engström W (2005) Spider silk proteins–mechanical property and gene sequence. Zool Sci 22:273–281

    Article  CAS  Google Scholar 

  21. Lin A, Chuang T, Pham T, Ho C, Hsia Y, Blasingame E, Vierra C (2015) 2—advances in understanding the properties of spider silk. In: Basu A (ed) Advances in silk science and technology. Woodhead Publishing, Cambridge, pp 17–40. https://doi.org/10.1016/B978-1-78242-311-9.00002-1

    Chapter  Google Scholar 

  22. Jenkins JE, Creager MS, Lewis RV, Holland GP, Yarger JL (2010) Quantitative correlation between the protein primary sequences and secondary structures in spider dragline silks. Biomacromolecules 11:192–200

    Article  CAS  Google Scholar 

  23. Rammensee S, Slotta U, Scheibel T, Bausch AR (2008) Assembly mechanism of recombinant spider silk proteins. Proc Natl Acad Sci U S A 105:6590

    Article  CAS  Google Scholar 

  24. Yarger JL, Cherry BR, van der Vaart A (2018) Uncovering the structure–function relationship in spider silk. Nat Rev Mater 3:18008

    Article  CAS  Google Scholar 

  25. Rising A, Johansson J (2015) Toward spinning artificial spider silk. Nat Chem Biol 11:309–315

    Article  CAS  Google Scholar 

  26. Chung H, Kim TY, Lee SY (2012) Recent advances in production of recombinant spider silk proteins. Curr Opin Biotechnol 23:957–964

    Article  CAS  Google Scholar 

  27. Teulé F, Cooper AR, Furin WA, Bittencourt D, Rech EL, Brooks A, Lewis RV (2009) A protocol for the production of recombinant spider silk-like proteins for artificial fiber spinning. Nat Protoc 4:341–355

    Article  Google Scholar 

  28. Dai B, Sargent CJ, Gui X, Liu C, Zhang F (2019) Fibril self-assembly of amyloid–spider silk block polypeptides. Biomacromolecules 20:2015–2023

    Article  CAS  Google Scholar 

  29. Ling S, Kaplan DL, Buehler MJ (2018) Nanofibrils in nature and materials engineering. Nat Rev Mater 3:18016

    Article  CAS  Google Scholar 

  30. Winkler S, Szela S, Avtges P, Valluzzi R, Kirschner DA, Kaplan D (1999) Designing recombinant spider silk proteins to control assembly. Int J Biol Macromol 24:265–270

    Article  CAS  Google Scholar 

  31. Aich P, An J, Yang B, Ko YH, Kim J, Murray J, Cha HJ, Roh JH, Park KM, Kim K (2018) Self-assembled adhesive biomaterials formed by a genetically designed fusion protein. Chem Commun 54:12642–12645

    Article  CAS  Google Scholar 

  32. Prince JT, McGrath KP, DiGirolamo CM, Kaplan DL (1995) Construction, cloning, and expression of synthetic genes encoding spider dragline silk. Biochemistry 34:10879–10885

    Article  CAS  Google Scholar 

  33. Eisoldt L, Hardy JG, Heim M, Scheibel TR (2010) The role of salt and shear on the storage and assembly of spider silk proteins. J Struct Biol 170:413–419

    Article  CAS  Google Scholar 

  34. Borkner CB, Lentz S, Müller M, Fery A, Scheibel T (2019) Ultrathin spider silk films: Insights into spider silk assembly on surfaces. ACS Appl Polym Mater 1:3366–3374

    Article  CAS  Google Scholar 

  35. Molina A, Scheibel T, Humenik M (2019) Nanoscale patterning of surfaces via DNA directed spider silk assembly. Biomacromolecules 20:347–352

    Article  CAS  Google Scholar 

  36. Humenik M, Mohrand M, Scheibel T (2018) Self-assembly of spider silk-fusion proteins comprising enzymatic and fluorescence activity. Bioconjug Chem 29:898–904

    Article  CAS  Google Scholar 

  37. Zha RH, Delparastan P, Fink TD, Bauer J, Scheibel T, Messersmith PB (2019) Universal nanothin silk coatings via controlled spidroin self-assembly. Biomater Sci 7:683–695

    Article  CAS  Google Scholar 

  38. Humenik M, Magdeburg M, Scheibel T (2014) Influence of repeat numbers on self-assembly rates of repetitive recombinant spider silk proteins. J Struct Biol 186:431–437

    Article  CAS  Google Scholar 

  39. Nilebäck L, Arola S, Kvick M, Paananen A, Linder MB, Hedhammar M (2018) Interfacial behavior of recombinant spider silk protein parts reveals cues on the silk assembly mechanism. Langmuir 34:11795–11805

    Article  Google Scholar 

  40. Nilebäck L, Hedin J, Widhe M, Floderus LS, Krona A, Bysell H, Hedhammar M (2017) Self-assembly of recombinant silk as a strategy for the chemical-free formation of bioactive coatings: a real-time study. Biomacromolecules 18:846–854

    Article  Google Scholar 

  41. Morris AM, Watzky MA, Agar JN, Finke RG (2008) Fitting neurological protein aggregation kinetic data via a 2-step, minimal/“ockham’s razor” model: the finke−watzky mechanism of nucleation followed by autocatalytic surface growth. Biochemistry 47:2413–2427

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author acknowledges insightful discussion and suggestions from Prof. Shengjie Ling and thanks Dr. Zhaowei Wu from ShanghaiTech University for the helpful suggestions with the production of recombinant spider silk proteins . Financial support was provided by the National Natural Science Foundation of China (51703128).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Na Kong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kong, N. (2021). General Methods to Produce and Assemble Recombinant Spider Silk Proteins. In: Ling, S. (eds) Fibrous Proteins. Methods in Molecular Biology, vol 2347. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1574-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1574-4_6

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1573-7

  • Online ISBN: 978-1-0716-1574-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics