Skip to main content

Structure of Animal Silks

  • Protocol
  • First Online:
Fibrous Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2347))

  • 1324 Accesses

Abstract

As an abundant fibrous protein, animal silks have received a variety of interests in both traditional and high-tech industries, such as textiles, decoration, and biomedicine, due to their unique advantages in mechanical performance, sustainability, biocompatibility, and biodegradability. While developing applications of animal silks, the structure of animal silks has also received more and more attention in these decades. Briefly, most animal silks can be considered as semicrystalline fibers, which are composed of β-sheet nanocrystals and amorphous regions. However, different animal silks have similarities and also have obvious differences at different structural levels. In this chapter, we will introduce the structures of the three most representative animal silks, that is, spider dragline silk, tussah silk, and mulberry silk. The similarities and differences in their structures will be highlighted, so as to provide fundamental guidance for the research and use of these animal silks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Yarger JL, Cherry BR, Arjan VDV (2018) Uncovering the structure–function relationship in spider silk. Nat Rev Mater 3:18008

    Article  CAS  Google Scholar 

  2. Ling S, Kaplan DL, Buehler MJ (2018) Nanofibrils in nature and materials engineering. Nat Rev Mater 3:18016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Meyers MA, Chen P-Y, Lin AY-M, Seki Y (2008) Biological materials: structure and mechanical properties. Prog Mater Sci 53:1–206

    Article  CAS  Google Scholar 

  4. Lin S, Ye C, Zhang W, Xu A, Chen S, Ren J, Ling S (2019) Nanofibril organization in silk fiber as inspiration for ductile and damage-tolerant fiber design. Adv Fiber Mater 1:231–240

    Article  Google Scholar 

  5. Zhang W, Ye C, Zheng K, Zhong J, Tang Y, Fan Y, Buehler MJ, Ling S, Kaplan DL (2018) Tensan silk-inspired hierarchical fibers for smart textile applications. ACS Nano 12:6968–6977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ling S, Jin K, Kaplan DL, Buehler MJ (2016) Ultrathin free-standing Bombyx mori silk nanofibril membranes. Nano Lett 16:3795–3800

    Article  CAS  PubMed  Google Scholar 

  7. Shengjie L, Zhao Q, Wenwen H, Sufeng C, David L, Kaplan (2017) Design and function of biomimetic multilayer water purification membranes. Sci Adv 3:e1601939

    Article  CAS  Google Scholar 

  8. Ling S, Wang Q, Zhang D, Zhang Y, Mu X, Kaplan DL, Buehler MJ (2018) Integration of stiff graphene and tough silk for the design and fabrication of versatile electronic materials. Adv Funct Mater 28:1705291

    Article  PubMed  CAS  Google Scholar 

  9. Ling S, Li C, Jin K, Kaplan DL, Buehler MJ (2016) Liquid exfoliated natural silk nanofibrils: applications in optical and electrical devices. Adv Mater 28:7783–7790

    Article  CAS  PubMed  Google Scholar 

  10. Guo J, Li C, Ling S, Huang W, Chen Y, Kaplan DL (2017) Multiscale design and synthesis of biomimetic gradient protein/biosilica composites for interfacial tissue engineering. Biomaterials 145:44–55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zheng K, Ling S (2019) De novo design of recombinant spider silk proteins for material applications. Biotechnol J 14:e1700753

    Article  PubMed  CAS  Google Scholar 

  12. Arcidiacono S, Mello C, Kaplan D, Cheley S, Bayley H (1998) Purification and characterization of recombinant spider silk expressed in Escherichia coli. Appl Microbiol Biotechnol 49:31–38

    Article  CAS  PubMed  Google Scholar 

  13. Jansson R, Lau CH, Ishida T, Ramström M, Sandgren M, Hedhammar M (2016) Functionalized silk assembled from a recombinant spider silk fusion protein (Z-4RepCT) produced in the methylotrophic yeast Pichia pastoris. Biotechnol J 11:687–699

    Article  CAS  PubMed  Google Scholar 

  14. Teulé F, Cooper AR, Furin WA, Bittencourt D, Rech EL, Brooks A, Lewis RV (2009) A protocol for the production of recombinant spider silk-like proteins for artificial fiber spinning. Nat Protoc 4:341–355

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Scheller J, Henggeler D, Viviani A, Conrad U (2004) Purification of spider silk-elastin from transgenic plants and application for human chondrocyte proliferation. Transgenic Res 13:51–57

    Article  CAS  PubMed  Google Scholar 

  16. Wang Y, Kim H-J, Vunjak-Novakovic G, Kaplan DL (2006) Stem cell-based tissue engineering with silk biomaterials. Biomaterials 27:6064–6082

    Article  CAS  PubMed  Google Scholar 

  17. Rammensee S, Huemmerich D, Hermanson KD, Scheibel T, Bausch AR (2005) Rheological characterization of hydrogels formed by recombinantly produced spider silk. Appl Phys A 82:261

    Article  CAS  Google Scholar 

  18. Huemmerich D, Slotta U, Scheibel T (2006) Processing and modification of films made from recombinant spider silk proteins. Appl Phys A 82:219–222

    Article  CAS  Google Scholar 

  19. Yoshimoto H, Shin YM, Terai H, Vacanti JP (2003) A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering. Biomaterials 24:2077–2082

    Article  CAS  PubMed  Google Scholar 

  20. Gustafsson L, Jansson R, Hedhammar M, van der Wijngaart W (2018) Structuring of functional spider silk wires, coatings, and sheets by self-assembly on superhydrophobic pillar surfaces. Adv Mater 3:1704325

    Article  CAS  Google Scholar 

  21. Giesa T, Arslan M, Pugno NM, Buehler MJ (2011) Nanoconfinement of spider silk fibrils begets superior strength, extensibility, and toughness. Nano Lett 11:5038–5046

    Article  CAS  PubMed  Google Scholar 

  22. Du N, Liu XY, Narayanan J, Li L, Lim ML, Li D (2006) Design of superior spider silk: from nanostructure to mechanical properties. Biophys J 91:4528–4535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Giesa T, Buehler MJ (2013) Nanoconfinement and the strength of biopolymers. Annu Rev Biophys 42:651–673

    Article  CAS  PubMed  Google Scholar 

  24. Keten S, Xu Z, Ihle B, Buehler MJ (2010) Nanoconfinement controls stiffness, strength and mechanical toughness of beta-sheet crystals in silk. Nat Mater 9:359–367

    Article  CAS  PubMed  Google Scholar 

  25. Fu C, Wang Y, Guan J, Chen X, Vollrath F, Shao Z (2019) Cryogenic toughness of natural silk and a proposed structure–function relationship. Mater Chem Front 3:2507–2513

    Article  CAS  Google Scholar 

  26. And YN, Asakura T (2002) High-resolution 13C CP/MAS NMR study on structure and structural transition of antheraea pernyi silk fibroin containing Poly(l-alanine) and Gly-rich regions. Macromolecules 35:2393–2400

    Article  CAS  Google Scholar 

  27. Work RW, Young CT (1987) The amino acid compositions of major and minor ampullate silks of certain orb-web-building spiders (Araneae, Araneidae). J Arachnol 15:65–80

    Google Scholar 

  28. Shao Z, Vollrath F, Yang Y, Thogersen HC (2003) Structure and behavior of regenerated spider silk. Macromolecules 36:1157–1161

    Article  CAS  Google Scholar 

  29. Ha SW, Gracz HS, Tonelli AE, Hudson SM (2005) Structural study of iIrregular amino acid sequences in the heavy chain of Bombyx mori silk fibroin. Biomacromolecules 6:2563

    Article  CAS  PubMed  Google Scholar 

  30. Takei F, Kikuchi Y, Kikuchi A, Mizuno S, Shimura K (1987) Further evidence for importance of the subunit combination of silk fibroin in its efficient secretion from the posterior silk gland cells. J Cell Biol 105:175–180

    Article  CAS  PubMed  Google Scholar 

  31. Tanaka K, Kajiyama N, Ishikura K, Shou W, Mizuno S (1999) Determination of the site of disulfide linkage between heavy and light chains of silk fibroin produced by Bombyx mori. Biochim Biophys Acta 1432:92–103

    Article  CAS  PubMed  Google Scholar 

  32. Tanaka K, Mori K, Mizuno S (1993) Immunological identification of the major disulfide-linked light component of silk fibroin. J Biochem 114:1–4

    Article  CAS  PubMed  Google Scholar 

  33. Inoue S, Tanaka K, Arisaka F, Kimura S, Ohtomo K, Mizuno S (2000) Silk fibroin of Bombyx mori is secreted, assembling a high molecular mass elementary unit consisting of H-chain, L-chain, and P25, with a 6:6:1 molar ratio. J Biol Chem 275:40517–40528

    Article  CAS  PubMed  Google Scholar 

  34. Cong-Zhao Z, Fabrice C, Nadine M, Yvan Z, Catherine E, Yang T, Michel J, Joel J, Michel D, Roland P (2000) Fine organization of Bombyx mori fibroin heavy chain gene. Nucleic Acids Res 12:2413–2419

    Google Scholar 

  35. Lewis RV (1992) Spider silk: the unraveling of a mystery. Acc Chem Res 25:392–398

    Article  CAS  Google Scholar 

  36. Sezutsu H, Yukuhiro K (2000) Dynamic rearrangement within the Antheraea pernyi silk fibroin gene is associated with four types of repetitive units. J Mol Evol 51:329–338

    Article  CAS  PubMed  Google Scholar 

  37. Xu M, Lewis RV (1990) Structure of a protein superfiber: spider dragline silk. Proc Natl Acad Sci U S A 87:7120–7124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Thamm C, Scheibel T (2017) Recombinant production, characterization, and fiber spinning of an engineered short Major Ampullate Spidroin (MaSp1s). Biomacromolecules 18:1365–1372

    Article  CAS  PubMed  Google Scholar 

  39. Lewis RV (2006) Spider silk: ancient ideas for new biomaterials. Chem Rev 106:3762–3774

    Article  CAS  PubMed  Google Scholar 

  40. Rising A, Nimmervoll H, Grip S, Fernandez-Arias A, Storckenfeldt E, Knight DP, Vollrath F, Engström W (2005) Spider silk proteins—mechanical property and gene sequence. Zool Sci 22:273–281

    Article  CAS  Google Scholar 

  41. Holland GP, Lewis RV, Yarger JL (2004) WISE NMR characterization of nanoscale heterogeneity and mobility in supercontracted nephila clavipes spider dragline silk. J Am Chem Soc 126:5867–5872

    Article  CAS  PubMed  Google Scholar 

  42. Holland GP, Jenkins JE, Creager MS, Lewis RV, Yarger JL (2008) Solid-state NMR investigation of major and minor ampullate spider silk in the native and hydrated states. Biomacromolecules 9:651–657

    Article  CAS  PubMed  Google Scholar 

  43. van Beek JD, Hess S, Vollrath F, Meier BH (2002) The molecular structure of spider dragline silk: folding and orientation of the protein backbone. Proc Natl Acad Sci 99:10266–10271

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Lefevre T, Rousseau ME, Pezolet M (2007) Protein secondary structure and orientation in silk as revealed by Raman spectromicroscopy. Biophys J 92:2885–2895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Brooks AE, Stricker SM, Joshi SB, Kamerzell TJ, Middaugh CR, Lewis RV (2008) Properties of synthetic spider silk fibers based on argiope aurantia MaSp2. Biomacromolecules 9:1506–1510

    Article  CAS  PubMed  Google Scholar 

  46. Hardy JG, Römer LM, Scheibel TR (2008) Polymeric materials based on silk proteins. Polymer 49:4309–4327

    Article  CAS  Google Scholar 

  47. Asakura T, Okonogi M, Nakazawa Y, Yamauchi K (2006) Structural analysis of alanine tripeptide with antiparallel and parallel beta-sheet structures in relation to the analysis of mixed beta-sheet structures in samia cynthia ricini silk protein fiber using solid-state NMR spectroscopy. J Am Chem Soc 128:6231–6238

    Article  CAS  PubMed  Google Scholar 

  48. Ha S-W, Gracz HS, Tonelli AE, Hudson SM (2005) Structural study of irregular amino acid sequences in the heavy chain of Bombyx mori silk fibroin. Biomacromolecules 6:2563–2569

    Article  CAS  PubMed  Google Scholar 

  49. Drummy LF, Farmer BL, Naik RR (2007) Correlation of the β-sheet crystal size in silk fibers with the protein amino acid sequence. Soft Matter 3:877–882

    Article  CAS  PubMed  Google Scholar 

  50. Hallmark V, Rabolt JF (1989) Fourier-transform Raman studies of secondary structure in synthetic polypeptides. Macromolecules 22:500–502

    Article  CAS  Google Scholar 

  51. Termonia Y (1994) Molecular modeling of spider silk elasticity. Macromolecules 27:7378–7381

    Article  CAS  Google Scholar 

  52. Blackledge TA (2012) Spider silk: a brief review and prospectus on research linking biomechanics and ecology in draglines and orb webs. J Arachnol 40:1–12

    Article  Google Scholar 

  53. Hakimi O, Knight DP, Vollrath F, Vadgama P (2007) Spider and mulberry silkworm silks as compatible biomaterials. Compos B Eng 38:324–337

    Article  CAS  Google Scholar 

  54. Thiel BL, Kunkel DD, Viney C (1994) Physical and chemical microstructure of spider dragline: a study by analytical transmission electron microscopy. Pept Sci 34:1089–1097

    Article  CAS  Google Scholar 

  55. Thiel BL, Guess KB, Viney C (2015) Non-periodic lattice crystals in the hierarchical microstructure of spider (major ampullate) silk. Biopolymers 41:703–719

    Article  Google Scholar 

  56. Riekel C, Vollrath F (2001) Spider silk fibre extrusion: combined wide- and small-angle X-ray microdiffraction experiments. Int J Biol Macromol 29:203–210

    Article  CAS  PubMed  Google Scholar 

  57. Grubb DT, Jelinski LW (2010) Fiber morphology of spider silk: the effects of tensile deformation. Macromolecules 30:2860–2867

    Article  Google Scholar 

  58. Fu C, Shao Z, Fritz V (2009) Animal silks: their structures, properties and artificial production. Chem Commun (Camb):6515–6529

    Google Scholar 

  59. Müller M (2007) Silkworm silk under tensile strain investigated by neutron spectroscopy and synchrotron X-ray diffraction. Macromolecules 40:1035–1042

    Article  CAS  Google Scholar 

  60. Krasnov I, Diddens I, Hauptmann N, Helms G, Ogurreck M, Seydel T, Funari SS, Muller M (2008) Mechanical properties of silk: interplay of deformation on macroscopic and molecular length scales. Phys Rev Lett 100:048104

    Article  PubMed  CAS  Google Scholar 

  61. Ling S, Qi Z, Knight DP, Huang Y, Huang L, Zhou H, Shao Z, Chen X (2013) Insight into the structure of single Antheraea pernyi silkworm fibers using synchrotron FTIR microspectroscopy. Biomacromolecules 14:1885–1892

    Article  CAS  PubMed  Google Scholar 

  62. Ling S, Qi Z, Knight DP, Shao Z, Chen X (2011) Synchrotron FTIR microspectroscopy of single natural silk fibers. Biomacromolecules 12:3344–3349

    Article  CAS  PubMed  Google Scholar 

  63. Nguyen AT, Huang QL, Yang Z, Lin N, Xu G, Liu XY (2015) Crystal networks in silk fibrous materials: from hierarchical structure to ultra performance. Small 11:1039–1054

    Article  CAS  PubMed  Google Scholar 

  64. Shen Y, Johnson MA, Martin DC (1998) Microstructural characterization of Bombyx mori silk fibers. Macromolecules 31:8857–8864

    Article  CAS  Google Scholar 

  65. Miller LD, Putthanarat S, Eby RK, Adams WW (1999) Investigation of the nanofibrillar morphology in silk fibers by small angle X-ray scattering and atomic force microscopy. Int J Biol Macromol 24:159–165

    Article  CAS  PubMed  Google Scholar 

  66. Xu G, Gong L, Yang Z, Liu XY (2014) What makes spider silk fibers so strong? From molecular-crystallite network to hierarchical network structures. Soft Matter 10:2116–2123

    Article  CAS  PubMed  Google Scholar 

  67. Putthanarat S, Stribeck N, Fossey SA, Eby RK, Adams WW (2000) Investigation of the nanofibrils of silk fibers. Polymer 41:7735–7747

    Article  CAS  Google Scholar 

  68. Poza P, Pérez-Rigueiro J, Elices M, Llorca J (2002) Fractographic analysis of silkworm and spider silk. Eng Fract Mech 69:1035–1048

    Article  Google Scholar 

  69. Wang Q, Schniepp HC (2018) Strength of recluse spider’s silk originates from nanofibrils. ACS Macro Lett 7:1364–1370

    Article  CAS  PubMed  Google Scholar 

  70. Niu Q, Peng Q, Lu L, Fan S, Shao H, Zhang H, Wu R, Hsiao BS, Zhang Y (2018) Single molecular layer of silk nanoribbon as potential basic building block of silk materials. ACS Nano 12:11860–11870

    Article  CAS  PubMed  Google Scholar 

  71. Zheng K, Zhong J, Qi Z, Ling S, Kaplan DL (2018) Isolation of silk mesostructures for electronic and environmental applications. Adv Funct Mater 28:1806380

    Article  CAS  Google Scholar 

  72. KITAGAWA M, KITAYAMA T (1997) Mechanical properties of dragline and capture thread for the spider Nephila clavata. J Mater Sci 32:2005–2012

    Article  CAS  Google Scholar 

  73. Brown CP, Harnagea C, Gill HS, Price AJ, Traversa E, Licoccia S, Rosei F (2012) Rough fibrils provide a toughening mechanism in biological fibers. ACS Nano 6:1961–1969

    Article  CAS  PubMed  Google Scholar 

  74. Cranford SW (2013) Increasing silk fibre strength through heterogeneity of bundled fibrils. J R Soc Interface 10:20130148

    Article  PubMed  PubMed Central  Google Scholar 

  75. Riekel C, Burghammer M, Dane TG, Ferrero C, Rosenthal M (2017) Nanoscale structural features in major ampullate spider silk. Biomacromolecules 18:231–241

    Article  CAS  PubMed  Google Scholar 

  76. Gould SAC, Tran KT, Spagna JC, Moore AMF, Shulman JB (1999) Short and long range order of the morphology of silk from Latrodectus hesperus (Black Widow) as characterized by atomic force microscopy. Int J Biol Macromol 24:151–157

    Article  CAS  PubMed  Google Scholar 

  77. Koebley SR, Vollrath F, Schniepp HC (2017) Toughness-enhancing metastructure in the recluse spider’s looped ribbon silk. Mater Horiz 4:377–382

    Article  CAS  Google Scholar 

  78. Li SF, McGhie AJ, Tang SL (1994) New internal structure of spider dragline silk revealed by atomic force microscopy. Biophys J 66:1209–1212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Vollrath F, Holtet T, Thøgersen HC, Frische S (1996) Structural organization of spider silk. Proc R Soc London Ser B 263:147–151

    Article  Google Scholar 

  80. Shao Z, Vollrath F (2002) Surprising strength of silkworm silk. Nature 418:741

    Article  CAS  PubMed  Google Scholar 

  81. Kundu SC, Kundu B, Talukdar S, Bano S, Nayak S, Kundu J, Mandal BB, Bhardwaj N, Botlagunta M, Dash BC, Acharya C, Ghosh AK (2012) Invited review nonmulberry silk biopolymers. Biopolymers 97:455–467

    Article  CAS  PubMed  Google Scholar 

  82. Sponner A, Vater W, Monajembashi S, Unger E, Grosse F, Weisshart K (2007) Composition and hierarchical organisation of a spider silk. PLoS One 2:e998

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yimin Fan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Zhang, W., Fan, Y. (2021). Structure of Animal Silks. In: Ling, S. (eds) Fibrous Proteins. Methods in Molecular Biology, vol 2347. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1574-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1574-4_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1573-7

  • Online ISBN: 978-1-0716-1574-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics