Skip to main content

Software to Conduct a Meta-Analysis and Network Meta-Analysis

  • Protocol
  • First Online:
Meta-Research

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2345))

Abstract

Statistical software for meta-analysis (MA) and network meta-analysis (NMA) have become indispensable for researchers. The aim of this chapter is to introduce key features of MA and NMA software to compare the effectiveness of interventions. Commonly used or routinely maintained statistical software are reviewed, including commercial and open-sourced programs such as Stata, R and Excel plug-ins. It does not provide a comprehensive overview of all features available in the software covered. Rather, it focuses on the essential features required to carry out an MA or NMA . This chapter begins with a review of key considerations when implementing an MA or NMA , then presents a summary of the software. Key features of each software option are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bax L, Yu LM, Ikeda N, Moons KG (2007) A systematic comparison of software dedicated to meta-analysis of causal studies. BMC Med Res Methodol 7:40. https://doi.org/10.1186/1471-2288-7-40

    Article  PubMed  PubMed Central  Google Scholar 

  2. Neupane B, Richer D, Bonner AJ, Kibret T, Beyene J (2014) Network meta-analysis using R: a review of currently available automated packages. PLoS One 9(12):e115065. https://doi.org/10.1371/journal.pone.0115065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Balduzzi S, Rücker G, Schwarzer G (2019) How to perform a meta-analysis with R: a practical tutorial. Evid Based Ment Health 22(4):153–160

    Article  PubMed  Google Scholar 

  4. Viechtbauer W (2010) Conducting meta-analyses in R with the metafor package. J Statistical Software 36(3):48. https://doi.org/10.18637/jss.v036.i03

    Article  Google Scholar 

  5. Rücker G, Krahn U, König J, Efthimiou O, Schwarzer G (2020) netmeta: Network Meta-Analysis using Frequentist Methods. . R package version 1.2-1 edn

    Google Scholar 

  6. van Valkenhoef G, Kuiper J (2016) gemtc: Network Meta-Analysis Using Bayesian Methods. . R package version 0.8.2 edn. CRAN

    Google Scholar 

  7. Béliveau A, Boyne DJ, Slater J, Brenner D, Arora P (2019) BUGSnet: an R package to facilitate the conduct and reporting of Bayesian network meta-analyses. BMC Med Res Methodol 19(1):196. https://doi.org/10.1186/s12874-019-0829-2

    Article  PubMed  PubMed Central  Google Scholar 

  8. Lin L, Zhang J, Hodges JS, Chu H (2017) Performing arm-based network meta-analysis in R with the pcnetmeta package. J Statistical Software 80(5):1–25. https://doi.org/10.18637/jss.v080.i05

    Article  Google Scholar 

  9. Palmer TM, Sterne JAC (2016) Meta-analysis in Stata: an updated collection from the Stata journal. Stata Press, College Station, Texas

    Google Scholar 

  10. White IR (2015) Network meta-analysis. Stata J 15(4):951–985

    Article  Google Scholar 

  11. Chaimani A, Salanti G (2015) Visualizing assumptions and results in network meta-analysis: the network graphs package. Stata J 15(4):905–950. https://doi.org/10.1177/1536867X1501500402

    Article  Google Scholar 

  12. National Institute for Health and Care Excellence (2019) Technical Support Documents. http://nicedsu.org.uk/technical-support-documents/

  13. Jackson D, White IR (2018) When should meta-analysis avoid making hidden normality assumptions? Biom J 60(6):1040–1058. https://doi.org/10.1002/bimj.201800071

    Article  PubMed  PubMed Central  Google Scholar 

  14. Efthimiou O (2018) Practical guide to the meta-analysis of rare events. Evid Based Ment Health 21(2):72–76

    Article  PubMed  Google Scholar 

  15. Bradburn MJ, Deeks JJ, Berlin JA, Localio AR (2007) Much ado about nothing: a comparison of the performance of meta-analysis methods with rare events. Stat Med 26:53–77

    Article  PubMed  Google Scholar 

  16. Sweeting MJ, Sutton AJ, Lambert PC (2004) What to add to nothing? Use and avoidance of continuity corrections in meta-analysis of sparse data. Stat Med 23(9):1351–1375. https://doi.org/10.1002/sim.1761

    Article  PubMed  Google Scholar 

  17. Yusuf S, Peto R, Lewis J, Collins R, Sleight P (1985) Beta blockade during and after myocardial infarction: an overview of the randomized trials. Prog Cardiovasc Dis 27(5):335–371. https://doi.org/10.1016/s0033-0620(85)80003-7

    Article  CAS  PubMed  Google Scholar 

  18. Rücker G, Schwarzer G, Carpenter J, Olkin I (2009) Why add anything to nothing? The arcsine difference as a measure of treatment effect in meta-analysis with zero cells. Stat Med 28(5):721–738. https://doi.org/10.1002/sim.3511

    Article  PubMed  Google Scholar 

  19. Mantel N, Haenszel W (1959) Statistical aspects of the analysis of data from retrospective studies of disease. J Natl Cancer Inst 22(4):719–748

    CAS  PubMed  Google Scholar 

  20. Senn S, Weir J, Hua TA, Berlin C, Branson M, Glimm E (2011) Creating a suite of macros for meta-analysis in SAS®: a case study in collaboration. Stat Probab Lett 81(7):842–851. https://doi.org/10.1016/j.spl.2011.02.010

    Article  Google Scholar 

  21. McCullagh P, Nelder JA (1989) Generalised linear models, 2nd edn. Chapman and Hall, London

    Book  Google Scholar 

  22. Simmonds MC, Higgins JP (2016) A general framework for the use of logistic regression models in meta-analysis. Stat Methods Med Res 25(6):2858–2877. https://doi.org/10.1177/0962280214534409

    Article  PubMed  Google Scholar 

  23. Sutton AJ, Abrams KR (2001) Bayesian methods in meta-analysis and evidence synthesis. Stat Methods Med Res 10(4):277–303. https://doi.org/10.1177/096228020101000404

    Article  CAS  PubMed  Google Scholar 

  24. Dias S, Ades AE, Welton NJ, Jansen JP, Sutton AJ (2018) Network meta-analysis for decision making. Statistics in Practice. Wiley, Hoboken, New Jersey. https://doi.org/10.1002/9781118951651

    Book  Google Scholar 

  25. Kuss O (2015) Statistical methods for meta-analyses including information from studies without any events—add nothing to nothing and succeed nevertheless. Stat Med 34(7):1097–1116. https://doi.org/10.1002/sim.6383

    Article  CAS  PubMed  Google Scholar 

  26. Efthimiou O, Rucker G, Schwarzer G, Higgins JPT, Egger M, Salanti G (2019) Network meta-analysis of rare events using the Mantel-Haenszel method. Stat Med 38(16):2992–3012. https://doi.org/10.1002/sim.8158

    Article  PubMed  Google Scholar 

  27. Dias S, Welton NJ, Sutton AJ, Ades AE (2011) NICE DSU technical support document 2: a generalised linear modelling framework for pair-wise and network meta-analysis of randomised controlled trials. Technical Support Document

    Google Scholar 

  28. Veroniki AA, Jackson D, Viechtbauer W, Bender R, Bowden J, Knapp G, Kuss O, Higgins JPT, Langan D, Salanti G (2016) Methods to estimate the between-study variance and its uncertainty in meta-analysis. Res Synth Methods 7(1):55–79. https://doi.org/10.1002/jrsm.1164

    Article  PubMed  Google Scholar 

  29. White IR, Barrett JK, Jackson D, Higgins JPT (2012) Consistency and inconsistency in network meta-analysis: model estimation using multivariate meta-regression. Res Synth Methods 3(2):111–125. https://doi.org/10.1002/jrsm.1045

    Article  PubMed  PubMed Central  Google Scholar 

  30. Seide SE, Jensen K, Kieser M (2020) A comparison of Bayesian and frequentist methods in random-effects network meta-analysis of binary data. Res Synth Methods 11(3):363–378. https://doi.org/10.1002/jrsm.1397

    Article  PubMed  Google Scholar 

  31. Wagenmakers E-J, Lee M, Lodewyckx T, Iverson GJ (2008) Bayesian versus frequentist inference. In: Hoijtink H, Klugkist I, Boelen PA (eds) Bayesian evaluation of informative hypotheses. Springer New York, New York, NY, pp 181–207. https://doi.org/10.1007/978-0-387-09612-4_9

    Chapter  Google Scholar 

  32. Rhodes KM, Turner RM, Higgins JP (2015) Predictive distributions were developed for the extent of heterogeneity in meta-analyses of continuous outcome data. J Clin Epidemiol 68(1):52–60. https://doi.org/10.1016/j.jclinepi.2014.08.012

    Article  PubMed  PubMed Central  Google Scholar 

  33. Turner RM, Jackson D, Wei Y, Thompson SG, Higgins JP (2015) Predictive distributions for between-study heterogeneity and simple methods for their application in Bayesian meta-analysis. Stat Med 34(6):984–998. https://doi.org/10.1002/sim.6381

    Article  PubMed  Google Scholar 

  34. Borenstein M, Higgins JPT, Hedges LV, Rothstein HR (2017) Basics of meta-analysis: I2 is not an absolute measure of heterogeneity. Res Synth Methods 8(1):5–18. https://doi.org/10.1002/jrsm.1230

    Article  PubMed  Google Scholar 

  35. Dias S, Welton NJ, Sutton AJ, Caldwell DM, Lu G, Ades AE (2011) NICE DSU technical support document 4: inconsistency in networks of evidence based on randomised controlled trials. Technical Support Document

    Google Scholar 

  36. Dias S, Welton NJ, Sutton AJ, Caldwell DM, Lu G, Ades AE (2013) Evidence synthesis for decision making 4: inconsistency in networks of evidence based on randomized controlled trials. Med Decis Mak 33:641–656. https://doi.org/10.1177/0272989X12455847

    Article  Google Scholar 

  37. Veroniki AA, Mavridis D, Higgins JPT, Salanti G (2014) Characteristics of a loop of evidence that affect detection and estimation of inconsistency: a simulation study. BMC Med Res Methodol 14(1):106. https://doi.org/10.1186/1471-2288-14-106

    Article  PubMed  PubMed Central  Google Scholar 

  38. Higgins JPT, Jackson D, Barrett JK, Lu G, Ades AE, White IR (2012) Consistency and inconsistency in network meta-analysis: concepts and models for multi-arm studies. Res Synth Methods 3(2):98–110. https://doi.org/10.1002/jrsm.1044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Krahn U, Binder H, Konig J (2013) A graphical tool for locating inconsistency in network meta-analyses. BMC Med Res Methodol 13:35. https://doi.org/10.1186/1471-2288-13-35

    Article  PubMed  PubMed Central  Google Scholar 

  40. Dias S, Welton NJ, Caldwell DM, Ades AE (2010) Checking consistency in mixed treatment comparison meta-analysis. Stat Med 29:932–944

    Article  CAS  PubMed  Google Scholar 

  41. Efthimiou O, Debray TP, van Valkenhoef G, Trelle S, Panayidou K, Moons KG, Reitsma JB, Shang A, Salanti G (2016) GetReal in network meta-analysis: a review of the methodology. Res Synth Methods 7(3):236–263

    Article  PubMed  Google Scholar 

  42. Brooks SP, Gelman A (1998) General methods for monitoring convergence of iterative simulations. J Comput Graph Stat 7(4):434–455

    Google Scholar 

  43. Gelman A, Rubin DB (1992) Inference from iterative simulation using multiple sequences. Stat Sci 7(4):457–472

    Google Scholar 

  44. Hutton B, Salanti G, Caldwell DM, Chaimani A, Schmid CH, Cameron C, Ioannidis JP, Straus S, Thorlund K, Jansen JP, Mulrow C, Catala-Lopez F, Gotzsche PC, Dickersin K, Boutron I, Altman DG, Moher D (2015) The PRISMA extension statement for reporting of systematic reviews incorporating network meta-analyses of health care interventions: checklist and explanations. Ann Intern Med 162(11):777–784. https://doi.org/10.7326/M14-2385

    Article  PubMed  Google Scholar 

  45. Nikolakopoulou A, Higgins JPT, Papakonstantinou T, Chaimani A, Del Giovane C, Egger M, Salanti G (2020) CINeMA: an approach for assessing confidence in the results of a network meta-analysis. PLoS Med 17(4):e1003082. https://doi.org/10.1371/journal.pmed.1003082

    Article  PubMed  PubMed Central  Google Scholar 

  46. Dias S, Welton NJ, Sutton AJ, Ades AE (2011) NICE DSU technical support document 1: introduction to evidence synthesis for decision making. Technical Support Document

    Google Scholar 

  47. Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gotzsche PC, Ioannidis JP, Clarke M, Devereaux PJ, Kleijnen J, Moher D (2009) The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. J Clin Epidemiol 62(10):e1–e34. https://doi.org/10.1016/j.jclinepi.2009.06.006

    Article  PubMed  Google Scholar 

  48. Page MJHJ, Sterne JAC (2016) Chapter 13: assessing risk of bias due to missing results in a synthesis. In: Higgins JPTTJ, Chandler J, Cumpston M, Li T, Page MJ, Welch VA (eds) Cochrane handbook for systematic reviews of interventions version 6.0 (updated July 2019). Cochrane

    Google Scholar 

  49. Salanti G, Giovane CD, Chaimani A, Caldwell D, Higgins J (2014) Evaluating the quality of evidence from a network meta-analysis. PLoS one 9(7):ee99682

    Article  Google Scholar 

  50. Rucker G, Schwarzer G (2015) Ranking treatments in frequentist network meta-analysis works without resampling methods. BMC Med Res Methodol 15:58. https://doi.org/10.1186/s12874-015-0060-8

    Article  PubMed  PubMed Central  Google Scholar 

  51. Chaimani A, Higgins JP, Mavridis D, Spyridonos P, Salanti G (2013) Graphical tools for network meta-analysis in STATA. PLoS One 8(10):e76654. https://doi.org/10.1371/journal.pone.0076654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Schwarzer G, Carpenter JR, Rücker G (2015) Meta-analysis with R. Springer International Publishing, Switzerland

    Book  Google Scholar 

  53. Röver C (2020) Bayesian random-effects meta-analysis using the bayesmeta R package. J Stat Softw 93(6). https://doi.org/10.18637/jss.v093.i06

  54. Gelman A, Meng X, Stern H (1996) Posterior predictive assessment of model fitness via realized discrepancies. Stat Sin 6:733–807

    Google Scholar 

  55. StataCorp (2019) Stata meta-analysis reference manual. vol Release 16. College Statioin, TX

    Google Scholar 

  56. The Nordic Cochrane Centre (2014) Review Manager (RevMan). Version 5.3. edn. The Cochrane Collaboration, Copenhagen

    Google Scholar 

  57. Barendregt JJ, Doi SA (2019) MetaXL User Guide. Version 5.3 edn., Sunrise Beach, Queensland, Australia

    Google Scholar 

  58. Stijnen T, Hamza TH, Ozdemir P (2010) Random effects meta-analysis of event outcome in the framework of the generalized linear mixed model with applications in sparse data. Stat Med 29(29):3046–3067. https://doi.org/10.1002/sim.4040

    Article  PubMed  Google Scholar 

  59. Jackson D, White IR, Riley RD (2012) Quantifying the impact of between-study heterogeneity in multivariate meta-analyses. Stat Med 31(29):3805–3820. https://doi.org/10.1002/sim.5453

    Article  PubMed  PubMed Central  Google Scholar 

  60. Rucker G, Peropoulou M, Schwarzer G (2019) Network meta-analysis of mulicomponent interventions. Biom J 62(3):808–821

    Article  PubMed  PubMed Central  Google Scholar 

  61. Welton NJ, Caldwell DM, Adamopoulos E, Vedhara K (2009) Mixed treatment comparison meta-analysis of complex interventions: psychological interventions in coronary heart disease. Am J Epidemiol 169(9):1158–1165. https://doi.org/10.1093/aje/kwp014

    Article  PubMed  Google Scholar 

  62. Beliveau A, Boyne DJ, Slater J, Brenner D, Arora P (2019) BUGSnet: an R package to facilitate the conduct and reporting of Bayesian network meta-analyses. BMC Med Res Methodol 19(1):196. https://doi.org/10.1186/s12874-019-0829-2

    Article  PubMed  PubMed Central  Google Scholar 

  63. White IR, Turner RM, Karahalios A, Salanti G (2019) A comparison of arm-based and contrast-based models for network meta-analysis. Stat Med 38(27):5197–5213. https://doi.org/10.1002/sim.8360

    Article  PubMed  PubMed Central  Google Scholar 

  64. Jones B, Roger J, Lane PW, Lawton A, Fletcher C, Cappelleri JC, Tate H, Moneuse P, on behalf of Psi Health Technology Special Interest Group ESs-t (2011) Statistical approaches for conducting network meta-analysis in drug development. Pharm Stat 10(6):523–531. https://doi.org/10.1002/pst.533

    Article  PubMed  Google Scholar 

  65. SAS Institute Inc. (2018) The GLIMMIX Procedure. In: SAS/STAT® 15.1 User’s Guide. SAS Institute Inc., Cary, NC

    Google Scholar 

  66. Tu Y-K (2014) Use of generalized linear mixed models for network meta-analysis. Med Decis Mak 34(7):911–918. https://doi.org/10.1177/0272989X14545789

    Article  Google Scholar 

  67. Piepho H-P, Madden LV, Roger J, Payne R, Williams ER (2018) Estimating the variance for heterogeneity in arm-based network meta-analysis. Pharm Stat 17(3):264–277. https://doi.org/10.1002/pst.1857

    Article  PubMed  Google Scholar 

  68. Chen F, Brown G (2016) Stokes M Fitting Your Favorite Mixed Models with PROC MCMC. In: Inc. SI (ed) SAS Global Forum 2016, Las Vegas, NV, 2016. SAS Institute Inc.

    Google Scholar 

  69. The Wine Project (2020) Wine. 5.0 edn

    Google Scholar 

  70. Owen RK, Bradbury N, Xin Y, Cooper N, Sutton A (2019) MetaInsight: an interactive web-based tool for analyzing, interrogating, and visualizing network meta-analyses using R-shiny and netmeta. Res Synth Methods 10(4):569–581. https://doi.org/10.1002/jrsm.1373

    Article  PubMed  PubMed Central  Google Scholar 

  71. Brown S, Hutton B, Clifford T, Coyle D, Grima D, Wells G, Cameron C (2014) A Microsoft-excel-based tool for running and critically appraising network meta-analyses--an overview and application of NetMetaXL. Syst Rev 3:110. https://doi.org/10.1186/2046-4053-3-110

    Article  PubMed  PubMed Central  Google Scholar 

  72. Dias S, Sutton AJ, Ades AE, Welton NJ (2013) Evidence synthesis for decision making 2: a generalized linear modeling framework for pairwise and network meta-analysis of randomized controlled trials. Med Decis Mak 33:607–617. https://doi.org/10.1177/0272989X12458724

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caitlin Daly .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Daly, C., Soobiah, C. (2022). Software to Conduct a Meta-Analysis and Network Meta-Analysis. In: Evangelou, E., Veroniki, A.A. (eds) Meta-Research. Methods in Molecular Biology, vol 2345. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1566-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1566-9_14

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1565-2

  • Online ISBN: 978-1-0716-1566-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics