Skip to main content

Dynamic Regulatory Event Mining by iDREM in Large-Scale Multi-omics Datasets During Biotic and Abiotic Stress in Plants

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2328))

Abstract

The system-wide complexity of genome regulation encoding the organism phenotypic diversity is well understood. However, a major challenge persists about the appropriate method to describe the systematic dynamic genome regulation event utilizing enormous multi-omics datasets. Here, we describe Interactive Dynamic Regulatory Events Miner (iDREM) which reconstructs gene-regulatory networks from temporal transcriptome, proteome, and epigenome datasets during stress to envisage “master” regulators by simulating cascades of temporal transcription-regulatory and interactome events. The iDREM is a Java-based software that integrates static and time-series transcriptomics and proteomics datasets, transcription factor (TF)–target interactions, microRNA (miRNA)–target interaction, and protein–protein interactions to reconstruct temporal regulatory network and identify significant regulators in an unsupervised manner. The hidden Markov model detects specialized manipulated pathways as well as genes to recognize statistically significant regulators (TFs/miRNAs) that diverge in temporal activity. This method can be translated to any biotic or abiotic stress in plants and animals to predict the master regulators from condition-specific multi-omics datasets including host–pathogen interactions for comprehensive understanding of manipulated biological pathways.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Brandes U, Robins G, McCranie ANN et al (2013) What is network science? Netw Sci 1(1):1–15. https://doi.org/10.1017/nws.2013.2

    Article  Google Scholar 

  2. Boccaletti S, Latora V, Moreno Y et al (2006) Complex networks: structure and dynamics. Phys Rep 424(4):175–308. https://doi.org/10.1016/j.physrep.2005.10.009

    Article  Google Scholar 

  3. Kumar N, Mishra B, Mehmood A et al (2020) Integrative network biology framework elucidates molecular mechanisms of SARS-CoV-2 pathogenesis. iScience 23(9):101526. https://doi.org/10.1016/j.isci.2020.101526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. McCormack ME, Lopez JA, Crocker TH et al (2016) Making the right connections: network biology and plant immune system dynamics. Curr Plant Biol 5:2–12. https://doi.org/10.1016/j.cpb.2015.10.002

    Article  Google Scholar 

  5. Garbutt CC, Bangalore PV, Kannar P et al (2014) Getting to the edge: protein dynamical networks as a new frontier in plant-microbe interactions. Front Plant Sci 5:312. https://doi.org/10.3389/fpls.2014.00312

    Article  PubMed  PubMed Central  Google Scholar 

  6. Lopez J, Mukhtar MS (2017) Mapping protein-protein interaction using high-throughput yeast 2-hybrid. Methods Mol Biol 1610:217–230. https://doi.org/10.1007/978-1-4939-7003-2_14

    Article  CAS  PubMed  Google Scholar 

  7. Mott GA, Smakowska-Luzan E, Pasha A et al (2019) Map of physical interactions between extracellular domains of Arabidopsis leucine-rich repeat receptor kinases. Sci Data 6(1):190025. https://doi.org/10.1038/sdata.2019.25

    Article  PubMed  PubMed Central  Google Scholar 

  8. Mishra B, Kumar N, Mukhtar MS (2019) Systems biology and machine learning in plant-pathogen interactions. Mol Plant-Microbe Interact 32(1):45–55. https://doi.org/10.1094/MPMI-08-18-0221-FI

    Article  CAS  PubMed  Google Scholar 

  9. Gao J, Barzel B, Barabasi AL (2016) Universal resilience patterns in complex networks. Nature 536(7615):238. https://doi.org/10.1038/nature18019

    Article  CAS  PubMed  Google Scholar 

  10. Cho DY, Kim YA, Przytycka TM (2012) Chapter 5: network biology approach to complex diseases. PLoS Comput Biol 8(12):e1002820. https://doi.org/10.1371/journal.pcbi.1002820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Naqvi RZ, Zaidi SS, Akhtar KP et al (2017) Transcriptomics reveals multiple resistance mechanisms against cotton leaf curl disease in a naturally immune cotton species, Gossypium arboreum. Sci Rep 7(1):15880. https://doi.org/10.1038/s41598-017-15963-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Naqvi RZ, SS-e-A Z, Mukhtar MS et al (2019) Transcriptomic analysis of cultivated cotton Gossypium hirsutum provides insights into host responses upon whitefly-mediated transmission of cotton leaf curl disease. PLoS One 14(2):e0210011. https://doi.org/10.1371/journal.pone.0210011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mishra B, Sun Y, Howton TC et al (2018) Dynamic modeling of transcriptional gene regulatory network uncovers distinct pathways during the onset of Arabidopsis leaf senescence. NPJ Syst Biol Appl 4:35. https://doi.org/10.1038/s41540-018-0071-2

    Article  PubMed  PubMed Central  Google Scholar 

  14. Mishra B, Sun Y, Ahmed H et al (2017) Global temporal dynamic landscape of pathogen-mediated subversion of Arabidopsis innate immunity. Sci Rep 7(1):7849. https://doi.org/10.1038/s41598-017-08073-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. de Luis Balaguer MA, Fisher AP, Clark NM et al (2017) Predicting gene regulatory networks by combining spatial and temporal gene expression data in Arabidopsis root stem cells. Proc Natl Acad Sci U S A 114(36):E7632–E7640. https://doi.org/10.1073/pnas.1707566114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Baltrus DA, Nishimura MT, Romanchuk A et al (2011) Dynamic evolution of pathogenicity revealed by sequencing and comparative genomics of 19 Pseudomonas syringae isolates. PLoS Pathog 7(7):e1002132. https://doi.org/10.1371/journal.ppat.1002132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ahmed H, Howton TC, Sun Y et al (2018) Network biology discovers pathogen contact points in host protein-protein interactomes. Nat Commun 9(1):2312. https://doi.org/10.1038/s41467-018-04632-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mukhtar MS, Carvunis AR, Dreze M et al (2011) Independently evolved virulence effectors converge onto hubs in a plant immune system network. Science 333(6042):596–601. https://doi.org/10.1126/science.1203659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Arabidopsis Interactome Mapping C (2011) Evidence for network evolution in an Arabidopsis interactome map. Science 333(6042):601–607. https://doi.org/10.1126/science.1203877

    Article  CAS  Google Scholar 

  20. Klopffleisch K, Phan N, Augustin K et al (2011) Arabidopsis G-protein interactome reveals connections to cell wall carbohydrates and morphogenesis. Mol Syst Biol 7:532. https://doi.org/10.1038/msb.2011.66

    Article  PubMed  PubMed Central  Google Scholar 

  21. Smakowska-Luzan E, Mott GA, Parys K et al (2018) An extracellular network of Arabidopsis leucine-rich repeat receptor kinases. Nature 553(7688):342–346. https://doi.org/10.1038/nature25184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Washington EJ, Mukhtar MS, Finkel OM et al (2016) Pseudomonas syringae type III effector HopAF1 suppresses plant immunity by targeting methionine recycling to block ethylene induction. Proc Natl Acad Sci U S A 113(25):E3577–E3586. https://doi.org/10.1073/pnas.1606322113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Jones JD, Dangl JL (2006) The plant immune system. Nature 444(7117):323–329. https://doi.org/10.1038/nature05286

    Article  CAS  PubMed  Google Scholar 

  24. Cook DE, Mesarich CH, Thomma BP (2015) Understanding plant immunity as a surveillance system to detect invasion. Annu Rev Phytopathol 53:541–563. https://doi.org/10.1146/annurev-phyto-080614-120114

    Article  CAS  PubMed  Google Scholar 

  25. Pritchard L, Birch PR (2014) The zigzag model of plant-microbe interactions: is it time to move on? Mol Plant Pathol 15(9):865–870. https://doi.org/10.1111/mpp.12210

    Article  PubMed  PubMed Central  Google Scholar 

  26. Sun Y, Detchemendy TW, Pajerowska-Mukhtar KM et al (2018) NPR1 in JazzSet with pathogen effectors. Trends Plant Sci 23(6):469–472. https://doi.org/10.1016/j.tplants.2018.04.007

    Article  CAS  PubMed  Google Scholar 

  27. Mukhtar MS, McCormack ME, Argueso CT et al (2016) Pathogen tactics to manipulate plant cell death. Curr Biol 26(13):R608–R619. https://doi.org/10.1016/j.cub.2016.02.051

    Article  CAS  PubMed  Google Scholar 

  28. Leach J, Leung H, Tisserat N (2014) Plant disease and resistance. Encyclopedia of Agriculture and Food Systems 2014:360–374. https://doi.org/10.1016/B978-0-444-52512-3.00165-0

  29. Tully JP, Hill AE, Ahmed HM et al (2014) Expression-based network biology identifies immune-related functional modules involved in plant defense. BMC Genomics 15:421. https://doi.org/10.1186/1471-2164-15-421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Thordal-Christensen H (2020) A holistic view on plant effector-triggered immunity presented as an iceberg model. Cell Mol Life Sci 77(20):3963–3976. https://doi.org/10.1007/s00018-020-03515-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Fei Q, Zhang Y, Xia R et al (2016) Small RNAs add zing to the zig-zag-zig model of plant defenses. Mol Plant-Microbe Interact 29(3):165–169. https://doi.org/10.1094/MPMI-09-15-0212-FI

    Article  CAS  PubMed  Google Scholar 

  32. Zaidi SS, Mukhtar MS, Mansoor S (2018) Genome editing: targeting susceptibility genes for plant disease resistance. Trends Biotechnol 36(9):898–906. https://doi.org/10.1016/j.tibtech.2018.04.005

    Article  CAS  PubMed  Google Scholar 

  33. Zaidi SS, Naqvi RZ, Asif M et al (2020) Molecular insight into cotton leaf curl geminivirus disease resistance in cultivated cotton (Gossypium hirsutum). Plant Biotechnol J 18(3):691–706. https://doi.org/10.1111/pbi.13236

    Article  CAS  PubMed  Google Scholar 

  34. Liu Z, Miller D, Li F et al (2020) A large accessory protein interactome is rewired across environments. elife 9:e62365. https://doi.org/10.7554/eLife.62365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Matcovitch-Natan O, Winter DR, Giladi A et al (2016) Microglia development follows a stepwise program to regulate brain homeostasis. Science 353(6301):aad8670. https://doi.org/10.1126/science.aad8670

    Article  CAS  PubMed  Google Scholar 

  36. Lewis LA, Polanski K, de Torres-Zabala M et al (2015) Transcriptional dynamics driving MAMP-triggered immunity and pathogen effector-mediated immunosuppression in Arabidopsis leaves following infection with Pseudomonas syringae pv tomato DC3000. Plant Cell 27(11):3038–3064. https://doi.org/10.1105/tpc.15.00471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lachmann A, Xu H, Krishnan J et al (2010) ChEA: transcription factor regulation inferred from integrating genome-wide ChIP-X experiments. Bioinformatics 26(19):2438–2444. https://doi.org/10.1093/bioinformatics/btq466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Jones CJ, Newsom D, Kelly B et al (2014) ChIP-seq and RNA-seq reveal an AmrZ-mediated mechanism for cyclic di-GMP synthesis and biofilm development by Pseudomonas aeruginosa. PLoS Pathog 10(3):e1003984. https://doi.org/10.1371/journal.ppat.1003984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ideker T, Thorsson V, Ranish JA et al (2001) Integrated genomic and proteomic analyses of a systematically perturbed metabolic network. Science 292(5518):929–934. https://doi.org/10.1126/science.292.5518.929

    Article  CAS  PubMed  Google Scholar 

  40. Ernst J, Vainas O, Harbison CT et al (2007) Reconstructing dynamic regulatory maps. Mol Syst Biol 3:74. https://doi.org/10.1038/msb4100115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ding J, Hagood JS, Ambalavanan N et al (2018) iDREM: interactive visualization of dynamic regulatory networks. PLoS Comput Biol 14(3):e1006019. https://doi.org/10.1371/journal.pcbi.1006019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bengio Y, Frasconi P (1995) An input-output HMM architecture. In G. Tesauro, D. S. Touretzky, & T. K. Leen (Eds.), Advances in neural information processing systems, 7, pp 427–434. Cambridge, MA: MIT Press

    Google Scholar 

  43. Song L, Huang SC, Wise A et al (2016) A transcription factor hierarchy defines an environmental stress response network. Science 354(6312). https://doi.org/10.1126/science.aag1550

  44. Ciofani M, Madar A, Galan C et al (2012) A validated regulatory network for Th17 cell specification. Cell 151(2):289–303. https://doi.org/10.1016/j.cell.2012.09.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Berardini TZ, Reiser L, Li D et al (2015) The Arabidopsis information resource: making and mining the “gold standard” annotated reference plant genome. Genesis 53(8):474–485. https://doi.org/10.1002/dvg.22877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

N.K. and J.L. were supported by the National Science Foundation award (IOS-1557796 and IOS-2038872). Work in K.P.M. laboratory is supported by a NSF-CAREER (IOS-1350244 and IOS-2038872) award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karolina M. Pajerowska-Mukhtar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Mishra, B., Kumar, N., Liu, J., Pajerowska-Mukhtar, K.M. (2021). Dynamic Regulatory Event Mining by iDREM in Large-Scale Multi-omics Datasets During Biotic and Abiotic Stress in Plants. In: MUKHTAR, S. (eds) Modeling Transcriptional Regulation. Methods in Molecular Biology, vol 2328. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1534-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1534-8_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1533-1

  • Online ISBN: 978-1-0716-1534-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics