Skip to main content

Whole-Genome Sequencing of Pathogens in Saliva : A Target-Enrichment Approach for SARS-CoV-2

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2327))

Abstract

Outbreak analysis and transmission surveillance of viruses can be performed via whole-genome sequencing after viral isolation. Such techniques have recently been applied to characterize and monitor SARS-CoV-2 , the etiological agent of the COVID-19 pandemic. However, the isolation and culture of SARS-CoV-2 is time consuming and requires biosafety level 3 containment, which is not ideal for many resource-constrained settings. An alternate method, bait capture allows target enrichment and sequencing of the entire SARS-CoV-2 genome eliminating the need for viral culture. This method uses a set of hybridization probes known as “baits” that span the genome and provide sensitive, accurate, and minimal off-target hybridization. Baits can be designed to detect any known virus or bacteria in a wide variety of specimen types, including oral secretions. The bait capture method presented herein allows the whole genome of SARS-CoV-2 in saliva to be sequenced without the need to culture and provides an outline of bait design and bioinformatic analysis to guide a bioinformatician.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Liuzzi G, Nicastri E, Puro V, Zumla A, Ippolito G (2016) Zika virus in saliva-new challenges for prevention of human to human transmission. Eur J Intern Med 33:e20–e21. https://doi.org/10.1016/j.ejim.2016.04.022

    Article  PubMed  Google Scholar 

  2. Khurshid Z, Zohaib S, Joshi C, Moin SF, Zafar MS, Speicher DJ (2020) Saliva as a non-invasive sample for the detection of SARS-CoV-2: a systematic review. medRxiv:2020.2005.2009.20096354. https://doi.org/10.1101/2020.05.09.20096354

  3. Speicher DJ, Wanzala P, D’Lima M, Johnson KE, Johnson NW (2015) Detecting DNA viruses in oral fluids: evaluation of collection and storage methods. Diagn Microbiol Infect Dis 82(2):120–127. https://doi.org/10.1016/j.diagmicrobio.2015.02.013

    Article  CAS  PubMed  Google Scholar 

  4. Coronaviridae Study Group of the International Committee on Taxonomy of Viruses (2020) The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat Microbiol 5(4):536–544. https://doi.org/10.1038/s41564-020-0695-z

    Article  CAS  Google Scholar 

  5. Xu R, Cui B, Duan X, Zhang P, Zhou X, Yuan Q (2020) Saliva: potential diagnostic value and transmission of 2019-nCoV. Int J Oral Sci 12(1):11. https://doi.org/10.1038/s41368-020-0080-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Xu H, Zhong L, Deng J, Peng J, Dan H, Zeng X et al (2020) High expression of ACE2 receptor of 2019-nCoV on the epithelial cells of oral mucosa. Int J Oral Sci 12(1):8. https://doi.org/10.1038/s41368-020-0074-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wyllie AL, Fournier J, Casanovas-Massana A, Campbell M, Tokuyama M, Vijayakumar P et al (2020) Saliva is more sensitive for SARS-CoV-2 detection in COVID-19 patients than nasopharyngeal swabs. medRxiv:2020.2004.2016.20067835. https://doi.org/10.1101/2020.04.16.20067835

  8. To KK, Tsang OT, Leung WS, Tam AR, Wu TC, Lung DC et al (2020) Temporal profiles of viral load in posterior oropharyngeal saliva samples and serum antibody responses during infection by SARS-CoV-2: an observational cohort study. Lancet Infect Dis 20(5):565–574. https://doi.org/10.1016/S1473-3099(20)30196-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Azzi L, Carcano G, Gianfagna F, Grossi P, Gasperina DD, Genoni A et al (2020) Saliva is a reliable tool to detect SARS-CoV-2. J Infect. https://doi.org/10.1016/j.jinf.2020.04.005

  10. Su YCF, Anderson DE, Young BE, Linster M, Zhu F, Jayakumar J et al (2020) Discovery and genomic characterization of a 382-nucleotide deletion in ORF7b and ORF8 during the early evolution of SARS-CoV-2. mBio 11(4). https://doi.org/10.1128/mBio.01610-20

  11. Gaudin M, Desnues C (2018) Hybrid capture-based next generation sequencing and its application to human infectious diseases. Front Microbiol 9:2924. https://doi.org/10.3389/fmicb.2018.02924

    Article  PubMed  PubMed Central  Google Scholar 

  12. Hodges E, Xuan Z, Balija V, Kramer M, Molla MN, Smith SW et al (2007) Genome-wide in situ exon capture for selective resequencing. Nat Genet 39(12):1522–1527. https://doi.org/10.1038/ng.2007.42

    Article  CAS  PubMed  Google Scholar 

  13. Gnirke A, Melnikov A, Maguire J, Rogov P, LeProust EM, Brockman W et al (2009) Solution hybrid selection with ultra-long oligonucleotides for massively parallel targeted sequencing. Nat Biotechnol 27(2):182–189. https://doi.org/10.1038/nbt.1523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Nasir JA, Kozak RA, Aftanas P, Raphenya AR, Smith KM, Maguire F et al (2020) A comparison of whole genome sequencing of SARS-CoV-2 using amplicon-based sequencing, random hexamers, and bait capture. Viruses 12(8). https://doi.org/10.3390/v12080895

  15. Phillippy AM, Deng X, Zhang W, Salzberg SL (2009) Efficient oligonucleotide probe selection for pan-genomic tiling arrays. BMC Bioinformatics 10:293. https://doi.org/10.1186/1471-2105-10-293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Campana MG (2018) BaitsTools: software for hybridization capture bait design. Mol Ecol Resour 18(2):356–361. https://doi.org/10.1111/1755-0998.12721

    Article  PubMed  Google Scholar 

  17. Metsky HC, Siddle KJ, Gladden-Young A, Qu J, Yang DK, Brehio P et al (2019) Capturing sequence diversity in metagenomes with comprehensive and scalable probe design. Nat Biotechnol 37(2):160–168. https://doi.org/10.1038/s41587-018-0006-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhang Z, Schwartz S, Wagner L, Miller W (2000) A greedy algorithm for aligning DNA sequences. J Comput Biol 7(1–2):203–214. https://doi.org/10.1089/10665270050081478

    Article  CAS  Google Scholar 

  19. Rouillard JM, Zuker M, Gulari E (2003) OligoArray 2.0: design of oligonucleotide probes for DNA microarrays using a thermodynamic approach. Nucleic Acids Res 31(12):3057–3062. https://doi.org/10.1093/nar/gkg426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Guitor AK, Raphenya AR, Klunk J, Kuch M, Alcock B, Surette MG et al (2019) Capturing the resistome: a targeted capture method to reveal antibiotic resistance determinants in metagenomes. Antimicrob Agents Chemother 64(1). https://doi.org/10.1128/AAC.01324-19

  21. Nasir JA, Speicher DJ, Kozak RA, Poinar HN, Millar MS, McArthur AG (2020) Rapid design of a bait capture platform for culture- and amplification-free next-generation sequencing of SARS-CoV-2. Preprints. https://doi.org/10.20944/preprints202002.0385.v1

  22. Briese T, Kapoor A, Mishra N, Jain K, Kumar A, Jabado OJ et al (2015) Virome capture sequencing enables sensitive viral diagnosis and comprehensive virome analysis. mBio 6(5):e01491–e01415. https://doi.org/10.1128/mBio.01491-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chalkias S, Gorham JM, Mazaika E, Parfenov M, Dang X, DePalma S et al (2018) ViroFind: a novel target-enrichment deep-sequencing platform reveals a complex JC virus population in the brain of PML patients. PLoS One 13(1):e0186945. https://doi.org/10.1371/journal.pone.0186945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Li B, Si HR, Zhu Y, Yang XL, Anderson DE, Shi ZL et al (2020) Discovery of bat coronaviruses through surveillance and probe capture-based next-generation sequencing. mSphere 5(1). https://doi.org/10.1128/mSphere.00807-19

  25. Lim XF, Lee CB, Pascoe SM, How CB, Chan S, Tan JH et al (2019) Detection and characterization of a novel bat-borne coronavirus in Singapore using multiple molecular approaches. J Gen Virol 100(10):1363–1374. https://doi.org/10.1099/jgv.0.001307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

D.J.S. was supported by McMaster University’s Michael G. DeGroote Initiative for Innovation in Healthcare. J.A.N. was supported by funds from the Comprehensive Antibiotic Resistance Database. D.E.A. is supported by a National Medical Research Council grant (COVID19RF2-0001). We thank Ben Tan Kiang Thong and Tanu Chawla (Duke-NUS Medical School, Singapore) for preparing Fig. 1 and Kathy Luinstra (St. Joseph’s Healthcare Hamilton, Canada) for technical advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David J. Speicher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Speicher, D.J., Nasir, J.A., Zhou, P., Anderson, D.E. (2021). Whole-Genome Sequencing of Pathogens in Saliva : A Target-Enrichment Approach for SARS-CoV-2 . In: Adami, G.R. (eds) The Oral Microbiome. Methods in Molecular Biology, vol 2327. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1518-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1518-8_8

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1517-1

  • Online ISBN: 978-1-0716-1518-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics