Skip to main content

In Vivo and In Vitro Models for the Study of Bone Remodeling and the Role of Immune Cells

  • Protocol
  • First Online:
Cytotoxic T-Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2325))

  • 1702 Accesses

Abstract

Immune and bone cells cross talk has been established by different years; however the underlying mechanisms require continuous investigation. To this end both in vivo and in vitro models have been realized and some of this are described in this chapter. In particular, here we described the animal models used for the understanding of lymphocyte role in bone homeostasis, together with some in vitro models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tsukasaki M, Takayanagi H (2019) Osteoimmunology: evolving concepts in bone-immune interactions in health and disease. Nat Rev Immunol 19:626–642

    Article  CAS  Google Scholar 

  2. Brunetti G, Di Benedetto A, Mori G (2014) Bone remodeling. In: Albanese CV, Faletti C (eds) Imaging of prosthetic joints. Springer, Milano

    Google Scholar 

  3. Komatsu N, Takayanagi H (2018) Immune-bone interplay in the structural damage in rheumatoid arthritis. Clin Exp Immunol 194:1–8

    Article  CAS  Google Scholar 

  4. Faienza MF, Ventura A, Marzano F, Cavallo L (2013) Postmenopausal osteoporosis: the role of immune system cells. Clin Dev Immunol 575936:2013

    Google Scholar 

  5. Ventura A, Brunetti G, Colucci S et al (2013) Glucocorticoid-induced osteoporosis in children with 21-hydroxylase deficiency. Biomed Res Int 2013:250462

    Article  Google Scholar 

  6. Brunetti G, Papadia F, Tummolo A et al (2016) Impaired bone remodeling in children with osteogenesis imperfecta treated and untreated with bisphosphonates: the role of DKK1, RANKL, and TNF-α. Osteoporos Int 27:2355–2365

    Article  CAS  Google Scholar 

  7. Brunetti G, Belisario DC, Bortolotti S et al (2020) LIGHT/TNFSF14 promotes osteolytic bone metastases in non-small cell lung cancer patients. J Bone Min Res 35:671–680

    Article  CAS  Google Scholar 

  8. Brunetti G, Rizzi R, Storlino G et al (2018) LIGHT/TNFSF14 as a new biomarker of bone disease in multiple myeloma patients experiencing therapeutic regimens. Front Immunol 9:2459

    Article  Google Scholar 

  9. Schambach SJ, Bag S, Schilling L et al (2010) Application of micro-CT in small animal imaging. Methods 50:2–13

    Article  CAS  Google Scholar 

  10. Badea CT, Drangova M, Holdsworth DW, Johnson GA (2008) In vivo small animal imaging using micro-CT and digital substraction angiography. Phys Med Biol 53:319–350

    Article  Google Scholar 

  11. Feldkamp LA, Goldstein SA, Parfitt AM et al (1989) The direct examination of three-dimensional bone architecture in vitro by computed tomography. J Bone Miner Res 4:3–11

    Article  CAS  Google Scholar 

  12. Rüegsegger P, Koller B, Müller R (1996) A microtomographic system for the nondestructive evaluation of bone architecture. Calcif Tissue Int 58:24–29

    Article  Google Scholar 

  13. Wachsmuth L, Engelke K (2004) High-resolution imaging of osteoarthritis using microcomputed tomography. Methods Mol Med 101:231–248

    PubMed  Google Scholar 

  14. Dempster DW, Compston JE, Drezner MK et al (2013) Standardized nomenclature, symbols, and units for bone histomorphometry: a 2012 update of the report of the ASBMR histomorphometry nomenclature committee. J Bone Miner Res 28:2–17

    Article  Google Scholar 

  15. Bouxsein ML, Ko FC Bone strength testing in rodents. In: Bilezikian J, Martin TJ, Clemens T, Rosen C (eds) (2019) Principles of bone biology, 4th edn. Academic Press, London

    Google Scholar 

  16. Greenblatt MB, Tsai JN, Wein MN (2017) Bone turnover markers in the diagnosis and monitoring of metabolic bone disease. Clin Chem 63:464–474

    Article  CAS  Google Scholar 

  17. Fall PM, Kennedy D, Smith JA et al (2000) Comparison of serum and urine assays for biochemical markers of bone resorption in postmenopausal women with and without hormone replacement therapy and in men. Osteoporos Int 11:481–485

    Article  CAS  Google Scholar 

  18. Kress BC, Mizrahi IA, Armour KW et al (1999) Use of bone alkaline phosphatase to monitor alendronate therapy in individual postmenopausal osteoporotic women. Clin Chem 45:1009–1017

    Article  CAS  Google Scholar 

  19. Li Y, Toraldo G, Li A et al (2007) B cells and T cells are critical for the preservation of bone homeostasis and attainment of peak bone mass in vivo. Blood 109:3839–3848

    Article  CAS  Google Scholar 

  20. Gao Y, Wu X, Terauchi M et al (2008) T cells potentiate PTH-induced cortical bone loss through CD40L signaling. Cell Metab 8:132–145

    Article  CAS  Google Scholar 

  21. Li JY, Tawfeek H, Bedi B et al (2011) Ovariectomy disregulates osteoblast and osteoclast formation through the T-cell receptor CD40 ligand. Proc Natl Acad Sci U S A 108:768–773

    Article  CAS  Google Scholar 

  22. Charles JF, Ermann J, Aliprantis AO (2015) The intestinal microbiome and skeletal fitness: connecting bugs and bones. Clin Immunol 159:163–169

    Article  CAS  Google Scholar 

  23. Sjögren K, Engdahl C, Henning P et al (2012) The gut microbiota regulates bone mass in mice. J Bone Miner Res 27:1357–1367

    Article  Google Scholar 

  24. El Khassawna T, Serra A, Bucher CH et al (2017) T lymphocytes influence the mineralization process of bone. Front Immunol 8:562

    Article  Google Scholar 

  25. Mombaerts P, Clarke AR, Rudnicki MA et al (1992) Mutations in T-cell antigen receptor genes alpha and beta block thymocyte development at different stages. Nature 360:225–231

    Article  CAS  Google Scholar 

  26. Zaiss MM, Axmann R, Zwerina J et al (2007) Treg cells suppress osteoclast formation: a new link between the immune system and bone. Arthritis Rheum 56:4104–4112

    Article  CAS  Google Scholar 

  27. Buchwald ZS, Kiesel JR, DiPaolo R et al (2012) Osteoclast activated FoxP3+ CD8+ T-cells suppress bone resorption in vitro. PLoS One 7:e38199

    Article  CAS  Google Scholar 

  28. Giuliani N, Colla S, Sala R et al (2002) Human myeloma cells stimulate the receptor activator of nuclear factor-kappa B ligand (RANKL) in T lymphocytes: a potential role in multiple myeloma bone disease. Blood 100:4615–4621

    Article  CAS  Google Scholar 

  29. Brunetti G, Rizzi R, Oranger A et al (2014) LIGHT/TNFSF14 increases osteoclastogenesis and decreases osteoblastogenesis in multiple myeloma-bone disease. Oncotarget 5:12950–12967

    Article  Google Scholar 

  30. Brunetti G, Oranger A, Colucci S, Grano M Experimental model for studying the involvement of regulatory cytotoxic T cells in bone resorption. In: Ranieri E (ed) (2014) Cytotoxic T-Cells, Methods in molecular biology (methods and protocols), vol 1186. Humana Press, New York, NY

    Google Scholar 

  31. Mori G, Brunetti G, Colucci S, Ciccolella F, Coricciati M, Pignataro P, Oranger A, Ballini A, Farronato D, Mastrangelo F, Tetè S, Grassi, FR, Grano M (2007) Alteration of activity and survival of osteoblasts obtained from human periodontitis patients: role of TRAIL. J Biol Regul Homeost Agents 21:105–114

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giacomina Brunetti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Brunetti, G., Grano, M. (2021). In Vivo and In Vitro Models for the Study of Bone Remodeling and the Role of Immune Cells. In: Gigante, M., Ranieri, E. (eds) Cytotoxic T-Cells. Methods in Molecular Biology, vol 2325. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1507-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1507-2_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1506-5

  • Online ISBN: 978-1-0716-1507-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics